SPACETIME LOCALITY OF THE BRST FORMALISM

被引:83
作者
HENNEAUX, M [1 ]
机构
[1] CTR ESTUDIOS CIENT SANTIAGO,SANTIAGO 9,CHILE
关键词
D O I
10.1007/BF02099287
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The spacetime locality of the BRST formalism is investigated. The analysis covers gauge theories with either closed or open algebras and is undertaken in the explicit context of the antifield formulation of the BRST theory. Under appropriate conditions, the homology of the Koszul-Tate differential modulo the spacetime exterior derivative is shown to be trivial in the space of non-integrated densities with positive antighost and pure ghost numbers. As a result: (i) the solution of the master equation can be taken to be a local functional; (ii) the gauge fixed action is also a local functional provided one takes the gauge fixing fermion to be a local functional as well; and (iii) the BRST transformation is local.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 26 条
[11]  
DEWIT B, 1979, PHYS LETT B, V79, P389
[12]   GENERALIZED HAMILTONIAN DYNAMICS [J].
DIRAC, PAM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (02) :129-148
[13]  
DIXON JA, UNPUB COHOMOLOGY REN
[14]  
DIXON JA, 1989, SPECTRAL SEQUENCE CA
[15]   Solution of the inverse problem of the calculus of variations [J].
Douglas, Jesse .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 50 (1-3) :71-128
[16]  
DUBOISVIOLETTE M, 1991, PARLPTHE9119 PREPR
[17]   EXISTENCE, UNIQUENESS AND COHOMOLOGY OF THE CLASSICAL BRST CHARGE WITH GHOSTS OF GHOSTS [J].
FISCH, J ;
HENNEAUX, M ;
STASHEFF, J ;
TEITELBOIM, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 120 (03) :379-407
[18]   HOMOLOGICAL PERTURBATION-THEORY AND THE ALGEBRAIC STRUCTURE OF THE ANTIFIELD-ANTIBRACKET FORMALISM FOR GAUGE-THEORIES [J].
FISCH, JML ;
HENNEAUX, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 128 (03) :627-640
[19]  
Henneaux M., 1990, Nuclear Physics B, Proceedings Supplements, V18A, P47, DOI 10.1016/0920-5632(90)90647-D
[20]   HAMILTONIAN FORM OF THE PATH INTEGRAL FOR THEORIES WITH A GAUGE FREEDOM [J].
HENNEAUX, M .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 126 (01) :1-66