CONSTRUCTIVE VERSIONS OF TARSKI FIXED-POINT THEOREMS

被引:140
作者
COUSOT, P
COUSOT, R
机构
[1] Laboratoire I.M.A.G, U. S. M. G., Grenoble, 38041
关键词
D O I
10.2140/pjm.1979.82.43
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a monotone operator on the complete lattice L into itself. Tarski’s lattice theoretical fixed point theorem states that the set of fixed points of F is a nonempty complete lattice for the ordering of L. We give a constructive proof of this theorem showing that the set of fixed points of F is the image of L by a lower and an upper preclosure operator. These preclosure operators are the composition of lower and upper closure operators which are defined by means of limits of stationary transfinite iteration sequences for F. In the same way we give a constructive characterization of the set of common fixed points of a family of commuting operators. Finally we examine some consequences of additional semicontinuity hypotheses. © 1979, University of California, Berkeley. All Rights Reserved.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 23 条
[12]  
LADEGAILLERIE Y, 1973, RAIRO, V1, P35
[13]  
Manna Z., 1978, Theoretical Computer Science, V6, P109, DOI 10.1016/0304-3975(78)90033-6
[14]  
Markowsky G., 1976, CHAIN COMPLETE POSET, V6, P53, DOI DOI 10.1007/BF02485815
[15]  
PASINI A, 1974, REND SEMIN MAT U PAD, V51, P167
[16]  
PELCZAR A, 1961, ANN POL MATH, V11, P199
[17]  
PELCZAR A, 1971, ZESZYTY NAUK U JAGIE, V15, P131
[18]  
SMITHSON RE, 1973, PACIFIC J MATH, V1, P363
[19]  
Tarski A., 1955, PACIFIC J MATH, V5, P285, DOI DOI 10.2140/PJM.1955.5.285
[20]  
WARD LE, 1957, CAN J MATH, V9, P578