WEAK-TAU APPROXIMATIONS FOR DISTRIBUTED PARAMETER-SYSTEMS IN INVERSE PROBLEMS

被引:3
作者
BANKS, HT
WADE, JG
机构
[1] UNIV SO CALIF,CTR APPL MATH SCI,LOS ANGELES,CA 90089
[2] NASA,LANGLEY RES CTR,ICASE,HAMPTON,VA 23665
关键词
D O I
10.1080/01630569108816418
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A theoretical framework for proposed ''weak Tau'' type of approximation schemes is considered in the context of least-squares parameter estimation problems for partial differential equations. A convergence theory which includes parameter estimate convergence and method stability is developed. Numerical results demonstrating the possible advantages of these ideas are also presented.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 24 条
[11]  
BANKS HT, 1990, UNPUB SIAM J NUM ANA
[12]  
BANKS HT, 1988, 2ND P COURS MATH EC, P521
[13]  
BANKS HT, 1984, P C INVERSE SCATTERI, P181
[14]   BOUNDARY-CONDITIONS IN CHEBYSHEV AND LEGENDRE METHODS [J].
CANUTO, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :815-831
[15]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[16]  
Canuto C., 1987, SPECTRAL METHODS FLU
[17]  
Gottlieb D., 1976, NUMERICAL ANAL SPECT
[18]  
MADAY Y, 1981, NUMER MATH, V37, P331
[19]  
Pazy A., 1983, SEMIGROUPS LINEAR OP, DOI DOI 10.1007/978-1-4612-5561-1
[20]  
Showalter R.E., 1977, HILBERT SPACE METHOD