ASYMPTOTICS FOR LEAST ABSOLUTE DEVIATION REGRESSION-ESTIMATORS

被引:476
作者
POLLARD, D
机构
关键词
D O I
10.1017/S0266466600004394
中图分类号
F [经济];
学科分类号
02 ;
摘要
The LAD estimator of the vector parameter in a linear regression is defined by minimizing the sum of the absolute values of the residuals. This paper provides a direct proof of asymptotic normality for the LAD estimator. The main theorem assumes deterministic carriers. The extension to random carriers includes the case of autoregressions whose error terms have finite second moments. For a first-order autoregression with Cauchy errors the LAD estimator is shown to converge at a 1/n rate. © 1991, Cambridge University Press. All rights reserved.
引用
收藏
页码:186 / 199
页数:14
相关论文
共 23 条
[21]   TRIMMED LEAST-SQUARES ESTIMATION IN THE LINEAR-MODEL [J].
RUPPERT, D ;
CARROLL, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1980, 75 (372) :828-838
[22]  
SANZ G, 1908, NR CONSISTENCY CERTA
[23]  
VANDEGEER S, 1988, ASYMPTOTIC NORMALITY