A TWO-DIMENSIONAL MESH MOVING TECHNIQUE FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS

被引:14
作者
ARNEY, DC [1 ]
FLAHERTY, JE [1 ]
机构
[1] RENSSELAER POLYTECH INST,DEPT COMP SCI,TROY,NY 12180
关键词
D O I
10.1016/0021-9991(86)90118-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:124 / 144
页数:21
相关论文
共 40 条
[1]  
ADJERID S, COMPUT METHODS APPL
[2]  
ADJERID S, 1985, 8521 RENSS POL I DEP
[3]  
ARNEY DC, 1985, THESIS RENSSELAER PO
[4]  
Babuska I., 1983, ADAPTIVE COMPUTATION, P57
[5]   AN ADAPTIVE GRID FINITE-DIFFERENCE METHOD FOR CONSERVATION-LAWS [J].
BELL, JB ;
SHUBIN, GR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (03) :569-591
[6]   DOMAINS AND BOUNDARIES OF NONSTATIONARY OBLIQUE SHOCK-WAVE REFLECTIONS .1. DIATOMIC GAS [J].
BENDOR, G ;
GLASS, II .
JOURNAL OF FLUID MECHANICS, 1979, 92 (JUN) :459-&
[7]  
BERGER M, 1982, STANCS82924 STANF U
[8]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[9]  
BERGER MJ, 1983, ADAPTIVE COMPUTATION, P237
[10]   THE FINITE-ELEMENT METHOD FOR PARABOLIC EQUATIONS .2. A POSTERIORI ERROR ESTIMATION AND ADAPTIVE APPROACH [J].
BIETERMAN, M ;
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1982, 40 (03) :373-406