HEAT-FLOW AND THERMAL MODELS OF THE BARBADOS RIDGE ACCRETIONARY COMPLEX

被引:52
作者
FERGUSON, IJ
WESTBROOK, GK
LANGSETH, MG
THOMAS, GP
机构
[1] PETR DEV OMAN LLC, MASQAT, OMAN
[2] UNIV BIRMINGHAM, SCH EARTH SCI, BIRMINGHAM B15 2TT, W MIDLANDS, ENGLAND
[3] COLUMBIA UNIV, LAMONT DOHERTY GEOL OBSERV, PALISADES, NY 10964 USA
关键词
D O I
10.1029/92JB01853
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The pattern of heat flow from the Barbados Ridge accretionary complex has been derived from marine surveys with heat flow probes, from measurements in drill holes, and from the depths of bottom-simulating seismic reflectors caused by gas hydrate. The heat flow from the accretionary complex has been simulated using a finite-difference model to investigate how heat flow responds to changes in the cross-sectional shape of the complex and the rate of convergence, and to variations in pore-fluid pressure within the complex and along the decollement at its base. In the south of the complex, heat flow decreases westward from the toe of the wedge, towards the island arc, because the downward movement of subducting lithosphere beneath the wedge and the active thickening of the accreted sedimentary sequence reduce the geothermal gradient more rapidly than thermal diffusion can maintain it. Localised high anomalies, attributed to the flow of warm fluids along fault zones, are superimposed on the conductive heat flow pattern. Farther west, heat flow increases arcward, produced partly by thermal diffusion re-establishing a steeper thermal gradient where the rate of thickening is decreased, but mainly by the arcward increase of frictional heating along the base of the wedge caused by the increase of slip rate and increased normal stress arising from thickening of the wedge. In the north of the complex, around the ODP Leg 110 drill sites, the conductive model cannot reproduce the anomalously high heat flow measurements, which can only be explained by the advection of warm pore fluids.
引用
收藏
页码:4121 / 4142
页数:22
相关论文
共 71 条
[41]  
Nafe J. E., 1963, SEA, V3, P794
[42]   ANALYSIS OF VARIATION OF OCEAN-FLOOR BATHYMETRY AND HEAT-FLOW WITH AGE [J].
PARSONS, B ;
SCLATER, JG .
JOURNAL OF GEOPHYSICAL RESEARCH, 1977, 82 (05) :803-827
[43]   REGIONAL VARIATION OF HEAT-FLOW, GEOTHERMS, AND LITHOSPHERIC THICKNESS [J].
POLLACK, HN ;
CHAPMAN, DS .
TECTONOPHYSICS, 1977, 38 (3-4) :279-296
[44]   PERMEABILITIES, FLUID PRESSURES, AND FLOW-RATES IN THE BARBADOS RIDGE COMPLEX [J].
SCREATON, EJ ;
WUTHRICH, DR ;
DREISS, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B6) :8997-9007
[45]   GENERATION OF HIGH PORE PRESSURES IN ACCRETIONARY PRISMS - INFERENCES FROM THE BARBADOS SUBDUCTION COMPLEX [J].
SHI, YL ;
WANG, CY .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1988, 93 (B8) :8893-8910
[46]  
SHIPLEY TH, 1979, AAPG BULL, V63, P2204
[47]  
SHIPLEY TH, 1982, INITIAL REP DEEP SEA, V66, P547
[48]   VOLUME LOSS AND DEFLUIDIZATION HISTORY OF BARBADOS [J].
SPEED, R .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B6) :8983-8996
[49]   BARBADOS - ARCHITECTURE AND IMPLICATIONS FOR ACCRETION [J].
SPEED, RC ;
LARUE, DK .
JOURNAL OF GEOPHYSICAL RESEARCH, 1982, 87 (NB5) :3633-3643
[50]  
SPEED RC, 1984, LESSER ANTILLES ARC