FRACTAL FRACTURE

被引:10
作者
KERTESZ, J [1 ]
机构
[1] HUNGARIAN ACAD SCI,INST TECH PHYS,H-1325 BUDAPEST,HUNGARY
来源
PHYSICA A | 1992年 / 191卷 / 1-4期
关键词
D O I
10.1016/0378-4371(92)90529-Y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The propagation of a crack can be considered as a moving boundary problem. Linear analysis shows that under some circumstances instability occurs constituting the basis for fractal growth. If the conditions are anisotropic, the crack becomes self-affine. Experiments on breaking paper sheets under tensile stress are described and the obtained lines analysed from the fractal point of view.
引用
收藏
页码:208 / 212
页数:5
相关论文
共 11 条
[1]  
Bunde A., 1991, FRACTALS DISORDERED
[2]   ROUGHNESS OF CRACK INTERFACES [J].
HANSEN, A ;
HINRICHSEN, EL ;
ROUX, S .
PHYSICAL REVIEW LETTERS, 1991, 66 (19) :2476-2479
[3]  
HANSEN AP, IN PRESS
[4]   STABILITY ANALYSIS OF CRACK-PROPAGATION [J].
HERRMANN, HJ ;
KERTESZ, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1991, 178 (02) :227-235
[5]  
Herrmann HJ, 1990, STATISTICAL MODELS F
[6]  
KERTESZ J, 1990, STATISTICAL MODELS F
[7]  
Kertesz J., 1992, SURFACE DISORDERING
[8]  
KERTESZ J, 1993, IN PRESS FRACTALS, V1
[9]  
MANDELBROT BB, 1992, PHYSICA A, V191, P25
[10]  
VANDAMME H, 1990, STATISTICAL MODELS F, P77