ESTIMATES OF ASYMMETRIC FREUD POLYNOMIALS ON THE REAL LINE

被引:44
作者
BAULDRY, WC
机构
[1] Department of Mathematical Sciences, Appalachian State University, Boone
关键词
D O I
10.1016/0021-9045(90)90105-Y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find bounds for the polynomials pn(x) orthogonal with respect to asymmetric Freud weights of the form w(x) = exp(-Q(x)), where Q is an even degree polynomial with positive leading coefficient, by utilizing asymptotics for the recursion coefficients an and bn and an approximate differential equation satisfied by pn(x). © 1990.
引用
收藏
页码:225 / 237
页数:13
相关论文
共 20 条
[1]   ASYMPTOTICS FOR SOLUTIONS OF SYSTEMS OF SMOOTH RECURRENCE EQUATIONS [J].
BAULDRY, WC ;
MATE, A ;
NEVAI, P .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 133 (02) :209-227
[2]  
BAULDRY WC, IN PRESS 6TH P TEX S
[3]  
BAULDRY WC, UNPUB ASYMPTOTICS GR
[4]  
BAULDRY WC, 1985, THESIS OHIO STATE U
[5]   ORTHOGONAL POLYNOMIALS AND THEIR DERIVATIVES .1. [J].
BONAN, S ;
NEVAI, P .
JOURNAL OF APPROXIMATION THEORY, 1984, 40 (02) :134-147
[6]   ESTIMATES OF THE HERMITE AND THE FREUD POLYNOMIALS [J].
BONAN, SS ;
CLARK, DS .
JOURNAL OF APPROXIMATION THEORY, 1990, 63 (02) :210-224
[7]  
BONAN SS, 1986, J APPROX THEORY, V416, P408
[8]  
Freud G., 1971, ORTHOGONAL POLYNOMIA
[10]  
LUBINSKY DS, 1988, LECTURE NOTES MATH, V1305