BAND-STRUCTURE OF A ONE-DIMENSIONAL, PERIODIC SYSTEM IN A SCALING LIMIT

被引:43
作者
HARRELL, EM
机构
[1] Department of Mathematics, Massachusetts Institute of Technology, Cambridge
关键词
D O I
10.1016/0003-4916(79)90191-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The band-structure of one-dimensional Schrödinger operators is calculated when there are (a) high potential barriers (or deep wells), or (b) a wide lattice-spacing (i.e., the distance between minima of the potential). Explicit power-series formulae and error estimates are rigorously proved. The procedure used, a rigorous semi-classical method, is actually convergent for nonzero scaling parameters. Some general facts about the spectra are also discussed. © 1979.
引用
收藏
页码:351 / 369
页数:19
相关论文
共 15 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]  
[Anonymous], 1886, ACTA MATH-DJURSHOLM, DOI [10.1007/BF02417081, DOI 10.1007/BF02417081]
[3]   SEMICLASSICAL APPROXIMATIONS IN WAVE MECHANICS [J].
BERRY, MV ;
MOUNT, KE .
REPORTS ON PROGRESS IN PHYSICS, 1972, 35 (04) :315-+
[4]  
COLEMAN S, IN PRESS
[5]  
Eastham M.S.P., 1974, SPECTRAL THEORY PERI
[6]  
Froman N., 1965, JWKB APPROXIMATION C
[7]  
GOLDSTEIN S, 1929, P R SOC EDINBURGH, V49, P210
[8]  
HARRELL E, UNPUBLISHED
[9]  
HARRELL EM, 1978, P AM MATH SOC, V69, P271, DOI 10.2307/2042610
[10]   RATE OF ASYMPTOTIC EIGENVALUE DEGENERACY [J].
HARRELL, EM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 60 (01) :73-95