BAND-STRUCTURE OF A ONE-DIMENSIONAL, PERIODIC SYSTEM IN A SCALING LIMIT

被引:43
作者
HARRELL, EM
机构
[1] Department of Mathematics, Massachusetts Institute of Technology, Cambridge
关键词
D O I
10.1016/0003-4916(79)90191-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The band-structure of one-dimensional Schrödinger operators is calculated when there are (a) high potential barriers (or deep wells), or (b) a wide lattice-spacing (i.e., the distance between minima of the potential). Explicit power-series formulae and error estimates are rigorously proved. The procedure used, a rigorous semi-classical method, is actually convergent for nonzero scaling parameters. Some general facts about the spectra are also discussed. © 1979.
引用
收藏
页码:351 / 369
页数:19
相关论文
共 15 条
[11]   ON THE UPPER AND LOWER BOUNDS OF EIGENVALUES [J].
KATO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1949, 4 (4-6) :334-339
[12]  
Mathieu E., 1868, J MATH PURE APPL, V13, P137
[13]  
Reed M, 1972, METHODS MODERN MATH, VI
[14]   COUPLING CONSTANT ANALYTICITY FOR ANHARMONIC OSCILLATOR [J].
SIMON, B ;
DICKE, A .
ANNALS OF PHYSICS, 1970, 58 (01) :76-&
[15]  
Whittaker E., 1969, COURSE MODERN ANAL