REPRESENTATION FOR LIMITING RANDOM VARIABLE OF A BRANCHING-PROCESS WITH INFINITE MEAN AND SOME RELATED PROBLEMS

被引:2
作者
COHN, H
PAKES, AG
机构
[1] AUSTRALIAN NATL UNIV,CANBERRA 2600,ACT,AUSTRALIA
[2] MONASH UNIV,CLAYTON 3168,VICTORIA,AUSTRALIA
关键词
D O I
10.2307/3213396
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:225 / 234
页数:10
相关论文
共 18 条
[1]  
Athreya K, 1972, BRANCHING PROCESSES, DOI DOI 10.1007/978-3-642-65371-1
[2]   A CENTRAL LIMITING THEOREM FOR BRANCHING PROCESSES [J].
BUHLER, WJ .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 11 (02) :139-&
[3]   ALMOST SURE CONVERGENCE OF BRANCHING-PROCESSES [J].
COHN, H .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 38 (01) :73-81
[4]   GALTON-WATSON PROCESS WITH INFINITE MEAN [J].
DARLING, DA .
JOURNAL OF APPLIED PROBABILITY, 1970, 7 (02) :455-&
[7]   EXTENSION OF A RESULT OF SENETA FOR SUPER-CRITICAL GALTON-WATSON PROCESS [J].
HEYDE, CC .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (02) :739-&
[8]   NOTE ON SIMPLE BRANCHING-PROCESSES WITH INFINITE MEAN [J].
HUDSON, IL ;
SENETA, E .
JOURNAL OF APPLIED PROBABILITY, 1977, 14 (04) :836-842
[9]  
Jagers P., 1975, BRANCHING PROCESSES
[10]   ASYMPTOTIC-BEHAVIOR OF BRANCHING-PROCESSES WITH INFINITE MEAN [J].
SCHUH, HJ ;
BARBOUR, AD .
ADVANCES IN APPLIED PROBABILITY, 1977, 9 (04) :681-723