To evaluate the relative importance of various components of damage caused by grain aphid (Sitobion avenae F.) populations in winter wheat, a simultation model of crop growth and development is combined with a model of aphid injury. The model applies to the time interval from flowering to ripeness which constitutes the main period of grain aphid immigration and development in winter wheat in the Netherlands. The crop model describes crop growth and development as a function of the prevailing weather and the available amount of soil nitrogen and consists of sink-source relations and distribution functions for carbohydrates and nitrogen. Injury by S. avenae affects crop growth both directly and indirectly. Direct effects on growth are due to aphid feeding. Indirect effects are caused by the aphid excretion product honeydew which affects leaf net carbon dioxide assimilation. Alternative hypotheses on the nature of the direct effects are formulated. Inputs to the model are average daily temperature, daily global radiation, the amount of nitrogen in the soil and the density of the aphid population. The major output is grain weight. The accuracy of the model is assessed by visual and statistical comparison to field data. The accuracy of both crop and damage model is satisfactory except for the final part of the growing season. Then, insufficient information on processes involved in leaf death and the termination of phloem transport to the grains results in overestimation of the rate of grain filling. The consequences of the lack of detailed information on the relation between environmental factors and the effect of honeydew on leaf carbon dioxide assimilation are assessed in a sensitivity analysis.