A-POSTERIORI ERROR-BOUNDS AND GLOBAL ERROR CONTROL FOR APPROXIMATION OF ORDINARY DIFFERENTIAL-EQUATIONS

被引:141
作者
ESTEP, D [1 ]
机构
[1] GEORGIA INST TECHNOL, SCH MATH, ATLANTA, GA 30332 USA
关键词
POSTERIORI ERROR BOUNDS; A PRIORI ERROR BOUNDS; ADAPTIVE ERROR CONTROL; CONTRACTIVE PROBLEMS; DISSIPATIVE PROBLEMS; DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD; GLOBAL ERROR CONTROL; ONE-STEP METHOD; ORDINARY DIFFERENTIAL EQUATION; STIFF PROBLEMS;
D O I
10.1137/0732001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author analyzes a finite element method for the integration of initial value problems in ordinary differential equations. General and contractive problems are treated, and quasioptimal a priori and a posteriori error bounds obtained in each case. In particular, good results are obtained for a class of stiff dissipative problems. These results are used to construct a rigorous and robust theory of global error control. The author also derives an asymptotic error estimate that is used in a discussion of the behavior of the error. In conclusion, the properties of the error control are exhibited in a series of numerical experiments.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 27 条
[1]   ERROR BOUNDS FOR NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS [J].
COOPER, GJ .
NUMERISCHE MATHEMATIK, 1971, 18 (02) :162-&
[2]  
DAHLQUIST G, 1993, LECTURE NOTES
[3]  
DAHLQUIST G, 1982, NUMERICAL INTEGRATIO, P97
[4]  
Dekker K., 1984, STABILITY RUNGE KUTT
[5]  
DELFOUR M, 1981, MATH COMPUT, V36, P455, DOI 10.1090/S0025-5718-1981-0606506-0
[6]   SOME STABILITY ASPECTS OF SCHEMES FOR THE ADAPTIVE INTEGRATION OF STIFF INITIAL-VALUE PROBLEMS [J].
DIECI, L ;
ESTEP, D .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (06) :1284-1303
[7]   ERROR-ESTIMATES AND AUTOMATIC TIME STEP CONTROL FOR NONLINEAR PARABOLIC PROBLEMS .1. [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) :12-23
[8]   TIME DISCRETIZATION OF PARABOLIC PROBLEMS BY THE DISCONTINUOUS GALERKIN METHOD [J].
ERIKSSON, K ;
JOHNSON, C ;
THOMEE, V .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (04) :611-643
[9]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :43-77
[10]  
ERIKSSON K, ADAPTIVE FINITE EL 5