A-POSTERIORI ERROR-BOUNDS AND GLOBAL ERROR CONTROL FOR APPROXIMATION OF ORDINARY DIFFERENTIAL-EQUATIONS

被引:141
作者
ESTEP, D [1 ]
机构
[1] GEORGIA INST TECHNOL, SCH MATH, ATLANTA, GA 30332 USA
关键词
POSTERIORI ERROR BOUNDS; A PRIORI ERROR BOUNDS; ADAPTIVE ERROR CONTROL; CONTRACTIVE PROBLEMS; DISSIPATIVE PROBLEMS; DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD; GLOBAL ERROR CONTROL; ONE-STEP METHOD; ORDINARY DIFFERENTIAL EQUATION; STIFF PROBLEMS;
D O I
10.1137/0732001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The author analyzes a finite element method for the integration of initial value problems in ordinary differential equations. General and contractive problems are treated, and quasioptimal a priori and a posteriori error bounds obtained in each case. In particular, good results are obtained for a class of stiff dissipative problems. These results are used to construct a rigorous and robust theory of global error control. The author also derives an asymptotic error estimate that is used in a discussion of the behavior of the error. In conclusion, the properties of the error control are exhibited in a series of numerical experiments.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 27 条
[11]  
ERIKSSON K, IN PRESS ADAPTIVE 3
[12]  
ERIKSSON K, ADAPTIVE FINITE EL 2
[13]  
ERIKSSON K, ADAPTIVE FINITE EL 4
[14]  
ESTEP D., 1993, RAIRO-MATH MODEL NUM, V27, P35
[15]  
ESTEP D, 1993, DYNAMICAL BEHAVIOR D
[16]  
Gear CW., 1971, NUMERICAL INITIAL VA
[17]  
Hairer E., 1987, SOLVING ORDINARY DIF, DOI DOI 10.1007/978-3-662-12607-3
[18]  
Hale Jack K., 1980, ORDINARY DIFFERENTIA
[19]  
Henrici P., 1962, DISCRETE VARIABLE ME