A BORN-GREEN-YVON INTEGRAL-EQUATION TREATMENT OF INCOMPRESSIBLE LATTICE MIXTURES

被引:39
作者
LIPSON, JEG
机构
[1] Department of Chemistry, Dartmouth College, Hanover
关键词
D O I
10.1063/1.462177
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The case of a binary incompressible lattice mixture is treated using the Born-Green-Yvon (BGY) integral equation approach with the Kirkwood superposition approximation. Analytic expressions for DELTA-E(mix) and DELTA-A(mix) are derived without invoking the random mixing approximation. The BGY predictions for DELTA-E(mix) and DELTA-S(nc), the noncombinatorial contribution to the entropy of mixing, are compared with those of the lattice cluster (LC) theory of Freed and co-workers for mixtures in which at least one of the two components is a polymer.
引用
收藏
页码:1418 / 1425
页数:8
相关论文
共 26 条
  • [21] STATISTICAL THERMODYNAMICS OF POLYMER-SOLUTIONS
    SANCHEZ, IC
    LACOMBE, RH
    [J]. MACROMOLECULES, 1978, 11 (06) : 1145 - 1156
  • [22] GENERALIZATION OF THE LATTICE-FLUID MODEL FOR SPECIFIC INTERACTIONS
    SANCHEZ, IC
    BALAZS, AC
    [J]. MACROMOLECULES, 1989, 22 (05) : 2325 - 2331
  • [23] SIMHA R, 1969, MACROMOLECULES, V2, P341
  • [24] Tompa H., 1956, POLYM SOLUTIONS
  • [25] WATTS RO, 1973, SPECIALIST PERIODICA, V1
  • [26] Yvon J., 1935, THEORIE STAT FLUIDES, V203