A RANDOM NUMBER GENERATOR FOR PARALLEL COMPUTERS

被引:12
作者
ALURU, S [1 ]
PRABHU, GM [1 ]
GUSTAFSON, J [1 ]
机构
[1] IOWA STATE UNIV SCI & TECHNOL,DEPT COMP SCI,AMES,IA 50011
关键词
PARALLEL RANDOM NUMBER GENERATOR; GFSR ALGORITHM; PRIMITIVE TRINOMIAL; LEAPFROG TECHNIQUE;
D O I
10.1016/0167-8191(92)90030-B
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Running huge simulational computations on a system of parallel processors requires the generation of uniform random sequences on each processor. Various techniques useful for the generation of parallel random sequences are analyzed for their suitability to parallel architectures. An efficient parallelization of the Generalized Feedback Shift Register (GFSR) algorithm for generating pseudorandom numbers is presented. The algorithm works on any parallel computer where the number of processors is a power of two and requires the same amount of memory per processor as required by the sequential GFSR algorithm.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 21 条
[12]   MATRICES AND THE STRUCTURE OF RANDOM NUMBER SEQUENCES [J].
MARSAGLIA, G ;
TSAY, LH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1985, 67 (JUN) :147-156
[13]   REGULARITIES IN CONGRUENTIAL RANDOM NUMBER GENERATORS [J].
MARSAGLIA, G .
NUMERISCHE MATHEMATIK, 1970, 16 (01) :8-+
[14]  
MARSAGLIA G, 1985, 16 C COMP SCI STAT I, P3
[15]  
MARSAGLIA G, 1972, APPLICATIONS NUMBER
[16]   A STATISTICAL-ANALYSIS OF GENERALIZED FEEDBACK SHIFT REGISTER PSEUDORANDOM NUMBER GENERATORS [J].
NIEDERREITER, H .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06) :1035-1051
[17]  
PERCUS OE, 1987, J PARALLEL DISTRIBUT, V6, P477
[18]  
SHARP HF, 1990, 5TH P C DISTR MEM CO, V1, P378
[19]   RANDOM NUMBERS GENERATED BY LINEAR RECURRENCE MODULO 2 [J].
TAUSWORTHE, RC .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :201-+
[20]   PRIMITIVE TRINOMIALS WHOSE DEGREE IS A MERSENNE EXPONENT [J].
ZIERLER, N .
INFORMATION AND CONTROL, 1969, 15 (01) :67-&