DIFFUSION-CONTROLLED DEPOSITION OF A DENSE LATTICE GAS

被引:3
作者
BURLATSKY, SF [1 ]
OSHANIN, GS [1 ]
ELYASHEVICH, MM [1 ]
机构
[1] NPO QUANT, MOSCOW, USSR
关键词
D O I
10.1016/0375-9601(90)90476-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the diffusion-controlled deposition of a two-dimensional hard-core lattice gas in systems where the temperature is quenched to zero not uniformly in the volume, but on the boundary only. We show that the patterns grown are inhomogeneous dense packings of tree-like clusters, which do not penetrate into each other. We present the simulation results that document the occurrence of fluctuation-induced forms of cluster-cluster screening, resulting in a decrease of the number of clusters, N, with the growth of the pattern's height h, N(h) almost-equal-to h -1/2.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 21 条
[11]   DIFFUSION-CONTROLLED DEPOSITION ON SURFACES - CLUSTER-SIZE DISTRIBUTION, INTERFACE EXPONENTS, AND OTHER PROPERTIES [J].
MEAKIN, P .
PHYSICAL REVIEW B, 1984, 30 (08) :4207-4214
[12]   ACTIVE ZONE OF GROWING CLUSTERS - DIFFUSION-LIMITED AGGREGATION AND THE EDEN MODEL - REPLY [J].
PLISCHKE, M ;
RACZ, Z .
PHYSICAL REVIEW LETTERS, 1985, 54 (18) :2054-2054
[13]   ACTIVE ZONE OF GROWING CLUSTERS - DIFFUSION-LIMITED AGGREGATION AND THE EDEN MODEL [J].
PLISCHKE, M ;
RACZ, Z .
PHYSICAL REVIEW LETTERS, 1984, 53 (05) :415-418
[14]   ACTIVE ZONE OF GROWING CLUSTERS - DIFFUSION-LIMITED AGGREGATION AND THE EDEN MODEL IN 2-DIMENSION AND 3-DIMENSION [J].
RACZ, Z ;
PLISCHKE, M .
PHYSICAL REVIEW A, 1985, 31 (02) :985-994
[15]  
RACZ Z, 1983, PHYS REV LETT, V51, P2383
[16]   FRACTAL GROWTH-PROCESSES [J].
SANDER, LM .
NATURE, 1986, 322 (6082) :789-793
[17]  
SANDER LM, 1984, KINETICS AGGREGATION
[18]   CROSSOVER FROM NONEQUILIBRIUM FRACTAL GROWTH TO EQUILIBRIUM COMPACT GROWTH [J].
SORENSEN, ES ;
FOGEDBY, HC ;
MOURITSEN, OG .
PHYSICAL REVIEW LETTERS, 1988, 61 (24) :2770-2773
[19]  
Witten Jr TA, PHYS REV LETT
[20]   DIFFUSION-LIMITED AGGREGATION [J].
WITTEN, TA ;
SANDER, LM .
PHYSICAL REVIEW B, 1983, 27 (09) :5686-5697