UNSTRUCTURED MULTIGRIDDING BY VOLUME AGGLOMERATION - CURRENT STATUS

被引:115
作者
LALLEMAND, MH
STEVE, H
DERVIEUX, A
机构
[1] INRIA, 06560 Valbonne
关键词
D O I
10.1016/0045-7930(92)90047-Y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe a multigrid (MG) method for solving the Euler equations as applied to non-structured meshes in two (triangles) and three dimensions (tetrahedra). The main idea is to coarsen the given mesh by using topological neighboring relations. It is applied to upwind solvers relying on the MUSCL methodology. Two MG schemes are presented: an explicit Runge-Kutta FAS, and an implicit correction scheme. Transonic external flow computations are described for illustration.
引用
收藏
页码:397 / 433
页数:37
相关论文
共 33 条
[11]  
FEZOUI L, 1985, INRIA358 RES REP
[12]  
HAENEL D, 1989, 4TH P COPP MOUNT C M, P234
[13]   MULTIPLE GRID AND OSHER SCHEME FOR THE EFFICIENT SOLUTION OF THE STEADY EULER EQUATIONS [J].
HEMKER, PW ;
SPEKREIJSE, SP .
APPLIED NUMERICAL MATHEMATICS, 1986, 2 (06) :475-493
[14]  
JAMESON A, 1985, NUMERICAL METHODS EU, P199
[15]  
KOREN B, 1988, CWINMN8805
[16]  
KOREN B, 1989, CWI NMR8908 REP
[17]  
LALLEMAND MH, 1987, INRIA602 RES REP
[18]  
LALLEMAND MH, 1988, THESIS U PROVENCE
[19]  
LECLERCQ MP, 1990, THESIS ST ETIENNE
[20]  
LOEHNER R, 1985, 2ND EUR C MULT METH