SKELETONIZATION USING AN EXTENDED EUCLIDEAN DISTANCE TRANSFORM

被引:24
作者
WRIGHT, MW
CIPOLLA, R
GIBLIN, PJ
机构
[1] UNIV CAMBRIDGE, DEPT ENGN, CAMBRIDGE, ENGLAND
[2] UNIV LIVERPOOL, DEPT PURE MATH, LIVERPOOL L69 3BX, MERSEYSIDE, ENGLAND
关键词
SYMMETRY; SKELETON; DISTANCE TRANSFORM; SINGULARITY THEORY;
D O I
10.1016/0262-8856(95)99723-E
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A standard method to perform skeletonization is to use a distance transform. Unfortunately, such an approach has the drawback that only the symmetric axis transform can be computed and not the more practical smoothed local symmetries or the more general symmetry set. Using singularity theory we introduce an extended distance transform which may be used to capture more of the symmetries of a shape. We describe the relationship of this extended distance transform to the skeletal shape descriptors themselves, and other geometric phenomena related to the boundary of the curve. We then show how the extended distance transform can be used to derive skeletal descriptions of an object.
引用
收藏
页码:367 / 375
页数:9
相关论文
共 20 条
[1]   FINDING LOCAL MAXIMA IN A PSEUDO-EUCLIDEAN DISTANCE TRANSFORM [J].
ARCELLI, C ;
DIBAJA, GS .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1988, 43 (03) :361-367
[2]   WAVE FRONT EVOLUTION AND EQUIVARIANT MORSE LEMMA [J].
ARNOLD, VI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (06) :557-582
[3]   GLOBAL THEOREMS FOR SYMMETRY SETS OF SMOOTH CURVES AND POLYGONS IN THE PLANE [J].
BANCHOFF, TF ;
GIBLIN, PJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 106 :221-231
[4]  
Blake A., 1993, [1993] Proceedings Fourth International Conference on Computer Vision, P724, DOI 10.1109/ICCV.1993.378142
[5]  
BLUM H, J THOERY BIOL, V38, P205
[6]  
BRADY M, 1984, AI757 MIT MEM
[7]  
Bruce J.W., 1992, CURVES SINGULARITIES, Vsecond edition, DOI DOI 10.1017/CBO9781139172615
[8]   GROWTH, MOTION AND 1-PARAMETER FAMILIES OF SYMMETRY SETS [J].
BRUCE, JW ;
GIBLIN, PJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 104 :179-204
[9]   AUTOMATIC REPRESENTATION OF FINGERPRINTS FOR DATA-COMPRESSION BY B-SPLINE FUNCTIONS [J].
CHONG, MMS ;
GAY, RKL ;
TAN, HN ;
LIU, J .
PATTERN RECOGNITION, 1992, 25 (10) :1199-1210
[10]   LOCAL SYMMETRY OF PLANE-CURVES [J].
GIBLIN, PJ ;
BRASSETT, SA .
AMERICAN MATHEMATICAL MONTHLY, 1985, 92 (10) :689-707