Sensor Fault Detection, Isolation and Reconstruction Using Nonlinear Principal Component Analysis

被引:33
作者
Harkat, Mohamed-Faouzi [1 ]
Djelel, Salah [1 ]
Doghmane, Noureddine [1 ]
Benouaret, Mohamed [1 ]
机构
[1] Univ Badji Mokhtar Annaba, Dept Elect, Fac Sci Ingn, BP 12, Annaba 23000, Algeria
关键词
Fault detection and isolation; reconstruction; nonlinear PCA (NLPCA); neural networks;
D O I
10.1007/s11633-007-0149-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State reconstruction approach is very useful for sensor fault isolation, reconstruction of faulty measurement and the determination of the number of components retained in the principal components analysis (PCA) model. An extension of this approach based on a Nonlinear PCA (NLPCA) model is described in this paper. The NLPCA model is obtained using five layer neural network. A simulation example is given to show the performances of the proposed approach.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 11 条
[1]   Nonlinear principal component analysis - Based on principal curves and neural networks [J].
Dong, D ;
McAvoy, TJ .
COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 (01) :65-78
[2]   Identification of faulty sensors using principal component analysis [J].
Dunia, R ;
Qin, SJ ;
Edgar, TF ;
McAvoy, TJ .
AICHE JOURNAL, 1996, 42 (10) :2797-2812
[3]   Analytical and Qualitative Model-based Fault Diagnosis - A Survey and Some New Results [J].
Frank, P. M. .
EUROPEAN JOURNAL OF CONTROL, 1996, 2 (01) :6-28
[4]  
Gertler J., 1997, P IFAC C SAFEPROCESS, P837
[5]  
Harkat M.-F., 2003, P IFAC S FAULT DET S
[6]  
Harkat M.-F., 2005, P 16 IFAC WORD C PRA
[7]   PRINCIPAL CURVES [J].
HASTIE, T ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (406) :502-516
[8]   Nonlinear principal component analysis by neural networks [J].
Hsieh, WW .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2001, 53 (05) :599-615
[9]   NONLINEAR PRINCIPAL COMPONENT ANALYSIS USING AUTOASSOCIATIVE NEURAL NETWORKS [J].
KRAMER, MA .
AICHE JOURNAL, 1991, 37 (02) :233-243
[10]  
Qin S. J., 1998, P 5 IFAC S DYN CONTR, P359