THE USE OF MODIFIED QUASI-INTERPOLATORY SPLINES FOR THE SOLUTION OF THE PRANDTL EQUATION

被引:5
作者
DEMICHELIS, V [1 ]
机构
[1] UNIV TURIN,DEPT MATH,I-10123 TURIN,ITALY
关键词
PRANDTL INTEGRAL EQUATION; MODIFIED QUASI-INTERPOLATORY SPLINES; NYSTROM TYPE METHOD; CAUCHY PRINCIPAL VALUE INTEGRALS;
D O I
10.1016/0377-0427(94)00036-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Modified quasi-interpolatory splines are used for the numerical solution of the generalized Prandtl equation. A Nystrom type method is applied, based on inserting in the integral equation a modified quasi-interpolatory spline instead of the unknown function. The integral equation can then be solved by collocation and evaluation of suitable Cauchy principal value integrals. Necessary conditions have been established for demonstrating that the approximate solution of the equation converges to the true solution.
引用
收藏
页码:329 / 338
页数:10
相关论文
共 19 条
[1]  
BAMBERGER L, 1982, TREATMENT INTEGRAL E, P47
[2]  
CALIO F, IN PRESS J COMPUT AP
[3]   NUMERICAL-INTEGRATION BASED ON QUASI-INTERPOLATING SPLINES [J].
DAGNINO, C ;
DEMICHELIS, V ;
SANTI, E .
COMPUTING, 1993, 50 (02) :149-163
[4]  
Dagnino C., 1993, NUMER ALGORITHMS, V5, P443
[5]  
DAGNINO C, 1994, UNPUB LOCAL SPLINE A
[6]  
DAGNINO C, IN PRESS INT J COMPU
[7]  
DEBOOR C, 1978, APPLIED MATH SCI, V27
[8]   UNIFORM-CONVERGENCE FOR CAUCHY PRINCIPAL VALUE INTEGRALS OF MODIFIED QUASI-INTERPOLATORY SPLINES [J].
DEMICHELIS, V .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 53 (3-4) :189-196
[9]  
JEN E, 1981, MATH COMPUT, V37, P417, DOI 10.1090/S0025-5718-1981-0628705-4
[10]   LOCAL SPLINE APPROXIMATION METHODS [J].
LYCHE, T ;
SCHUMAKER, LL .
JOURNAL OF APPROXIMATION THEORY, 1975, 15 (04) :294-325