KANTOROVICH-OSTROWSKI CONVERGENCE THEOREMS AND OPTIMAL ERROR-BOUNDS FOR JARRATTS ITERATIVE METHOD

被引:2
作者
CHEN, D
机构
[1] Department of Mathematical Sciences, University of Texas at El Paso, El Paso
关键词
Kantorovich theorem; multipoint iterative method; Nonlinear equation;
D O I
10.1080/00207169008803805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the first part of this paper, we consider the Kantorovich-Ostrowski convergence theorem of a fourth order method which requires two evaluations of f and one of f for solving nonlinear equations. The convergence of the iteration is established under the following assumptions: Let [formula omitted] be C4 on D with [formula omitted] be a convex open domain [formula omitted] and [formula omitted] for all x,y∊D. Assume that [formula omitted] Here xn and yn are generated by the following schemes: [formula omitted] In the second part, we show that in fact Jarratt's method is equivalent to Newton's method under optimal operator. Also we give an exact error constant and show that it cannot be improved. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:221 / 235
页数:15
相关论文
共 19 条
[1]   A KANTOROVICH-TYPE CONVERGENCE ANALYSIS FOR THE GAUSS-NEWTON-METHOD [J].
HAUSSLER, WM .
NUMERISCHE MATHEMATIK, 1986, 48 (01) :119-125
[2]   SOME 4TH ORDER MULTIPOINT ITERATIVE METHODS FOR EQUATIONS [J].
JARRATT, P .
MATHEMATICS OF COMPUTATION, 1966, 20 (95) :434-&
[3]  
KANTOROVICH L, 1939, DOKL AKAD NAUK SSSR+, V59, P1237
[4]  
Kantorovich L. V, 1964, FUNCTIONAL ANAL
[5]  
Kantorovich L. V., 1951, DOKL AKAD NAUK SSSR, V80, P849
[6]   OPTIMAL ORDER OF ONE-POINT AND MULTIPOINT ITERATION [J].
KUNG, HT ;
TRAUB, JF .
JOURNAL OF THE ACM, 1974, 21 (04) :643-651
[7]   KANTOROVICH THEOREM WITH OPTIMAL ERROR BOUNDS [J].
MIEL, GJ .
AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (03) :212-215
[8]  
MIEL GJ, 1980, MATH COMPUT, V4, P185
[9]  
Ortega J.M., 1970, OCLC1154227410, Patent No. 1154227410
[10]   NEWTON-KANTOROVICH THEOREM [J].
ORTEGA, JM .
AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (06) :658-&