MECHANISM OF A DIRECTLY OBSERVED BETA-HYDRIDE ELIMINATION PROCESS OF IRIDIUM ALKOXO COMPLEXES

被引:115
作者
BLUM, O [1 ]
MILSTEIN, D [1 ]
机构
[1] WEIZMANN INST SCI,DEPT ORGAN CHEM,IL-76100 REHOVOT,ISRAEL
关键词
D O I
10.1021/ja00121a016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The octahedral alkoxo complexes mer-cis-HIr(OR)Cl(PR(3)')(3) (R = Me, Et, i-Pr; R' = Me, Et; H trans to Cl) decompose at room temperature in an alcohol/benzene solution, forming the dihydrido products mer-cis-H2IrCl(PR(3)')(3) and the corresponding aldehyde or ketone, The reaction rate is of first order in the iridium complex and of 1.33 order in the alcohol, which serves as a catalyst. The rate depends on the nature of the phosphine (PEt(3) > PMe(3)), on the alkyl substituent of the alkoxide (Me > Et much greater than i-Pr), and on the medium (benzene > N-methylpyrrolidone) but is not effected by excess phosphine. The activation parameters obtained for the decomposition of mer-cis-HIr(OCH3)Cl(PMe(3))(3) are Delta H-obs(double dagger) = 24.1 +/- 1.8 kcal mol(-1), Delta S-obs(double dagger) = 0.6 +/- 5.9 eu, and Delta G(obs)(double dagger) (298 K) = 23.9 +/- 3.6 kcal mol(-1). The kinetic isotope effect (combined primary and secondary effects) for the decomposition of mer-cis-DIr(OCD3)Cl(PMe(3))(3) at 22 degrees C is k(H)/k(D) = 2.45 +/- 0.10, and the secondary kinetic isotope effect for the decomposition of DIr(OCH3)Cl(PMe(3))(3) at 22 degrees C is 1.10 +/- 0.06. Both DIr(OCH3)Cl(PMe(3))(3) and HIr(OCD3)Cl(PMe(3))(3) produce only the two mer-cis isomers of HDIrCl(PMe(3))(3), but in different ratios. The following steps are involved in the beta-hydride elimination process: (a) pre-equilibrium generation of a free coordination site by chloride dissociation, which is induced by hydrogen bonding of a methanol molecule to the chloride; (b) irreversible rate-determining beta-C-H cleavage through the sterically favored transition state; (c) facile, irreversible dissociation of the aldehyde; (d) ligand rearrangement; and (e) irreversible reassociation of the chloride. Selective deuterium labeling enables the elucidation of a competing minor mechanism through the electronically favored transition state, operative for the trimethylphosphine complex only.
引用
收藏
页码:4582 / 4594
页数:13
相关论文
共 133 条
[11]  
BLUM J, 1974, J CHEM SOC CHEM COMM, P309
[12]  
BLUM O, 1995, ANGEW CHEM INT EDIT, V34, P229, DOI 10.1002/anie.199502291
[13]  
BLUM O, UNPUB
[14]   OCTAHEDRAL AND TRIGONAL-BIPYRAMIDAL COMPLEXES OF RUTHENIUM(II) WITH BIDENTATE PHOSPHINE-LIGANDS [J].
BRIGGS, JC ;
MCAULIFFE, CA ;
DYER, G .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1984, (03) :423-427
[15]   CARBON-HYDROGEN-TRANSITION METAL BONDS [J].
BROOKHART, M ;
GREEN, MLH .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1983, 250 (01) :395-408
[16]   1,1,2,2,2,2,3,3,3,3-DECACARBONYL-1-(ETA-CYCLOHEXA-1,3-DIENE)-TRIANGULO-TRIOSMIUM - NOVEL INTERMEDIATE IN SYNTHETIC OSMIUM CLUSTER CHEMISTRY [J].
BRYAN, EG ;
JOHNSON, BFG ;
LEWIS, J .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1977, (14) :1328-1330
[17]   COMPARISON OF METAL-HYDROGEN, METAL-OXYGEN, METAL-NITROGEN AND METAL-CARBON BOND STRENGTHS AND EVALUATION OF FUNCTIONAL-GROUP ADDITIVITY PRINCIPLES FOR ORGANORUTHENIUM AND ORGANOPLATINUM COMPOUNDS [J].
BRYNDZA, HE ;
DOMAILLE, PJ ;
TAM, W ;
FONG, LK ;
PACIELLO, RA ;
BERCAW, JE .
POLYHEDRON, 1988, 7 (16-17) :1441-1452
[18]   BETA-HYDRIDE ELIMINATION FROM METHOXO VS ETHYL LIGANDS - THERMOLYSIS OF (DPPE)PT(OCH3)2, (DPPE)PT(CH2CH3)(OCH3) AND (DPPE)PT(CH2CH3)2 [J].
BRYNDZA, HE ;
CALABRESE, JC ;
MARSI, M ;
ROE, DC ;
TAM, W ;
BERCAW, JE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1986, 108 (16) :4805-4813
[19]   KINETICS AND MECHANISM OF PHOSPHINE EXCHANGE FOR RUTHENIUM(II) COMPLEXES IN THE SERIES (ETA-5-C5ME5)(PME3)2RUX - ANCILLARY LIGAND EFFECTS ON DATIVE LIGAND DISSOCIATION [J].
BRYNDZA, HE ;
DOMAILLE, PJ ;
PACIELLO, RA ;
BERCAW, JE .
ORGANOMETALLICS, 1989, 8 (02) :379-385
[20]   REVERSIBLE METAL-TO-METAL METHYL TRANSFER IN ETA-5-CYCLOPENTADIENYL(TRIPHENYLPHOSPHINE)DIMETHYLCOBALT(III) [J].
BRYNDZA, HE ;
EVITT, ER ;
BERGMAN, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (15) :4948-4951