STABILIZING CHAOTIC-SCATTERING TRAJECTORIES USING CONTROL

被引:46
作者
LAI, YC
TEL, T
GREBOGI, C
机构
[1] JOHNS HOPKINS UNIV, SCH MED, DEPT BIOMED ENGN, BALTIMORE, MD 21205 USA
[2] EOTVOS LORAND UNIV, INST THEORET PHYS, H-1088 BUDAPEST, HUNGARY
[3] UNIV MARYLAND, INST PHYS SCI & TECHNOL, COLL PK, MD 20742 USA
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 02期
关键词
D O I
10.1103/PhysRevE.48.709
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The method of stabilizing unstable periodic orbits in chaotic dynamical systems by Ott, Grebogi, and Yorke (OGY) is applied to control chaotic scattering in Hamiltonian systems. In particular, we consider the case of nonhyperbolic chaotic scattering, where there exist Kolmogorov-Arnold-Moser (KAM) surfaces in the scattering region. It is found that for short unstable periodic orbits not close to the KAM surfaces, both the probability that a particle can be controlled and the average time to achieve control are determined by the initial exponential decay rate of particles in the hyperbolic component. For periodic orbits near the KAM surfaces, due to the stickiness effect of the KAM surfaces on particle trajectories, the average time to achieve control can greatly exceed that determined by the hyperbolic component. The applicability of the OGY method to stabilize intermediate complexes of classical scattering systems is suggested.
引用
收藏
页码:709 / 717
页数:9
相关论文
共 32 条
  • [1] BIFURCATION TO CHAOTIC SCATTERING
    BLEHER, S
    GREBOGI, C
    OTT, E
    [J]. PHYSICA D, 1990, 46 (01): : 87 - 121
  • [2] ROUTES TO CHAOTIC SCATTERING
    BLEHER, S
    OTT, E
    GREBOGI, C
    [J]. PHYSICAL REVIEW LETTERS, 1989, 63 (09) : 919 - 922
  • [3] CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS
    CHIRIKOV, BV
    SHEPELYANSKY, DL
    [J]. PHYSICA D, 1984, 13 (03): : 395 - 400
  • [4] ISOLATED UNSTABLE PERIODIC ORBITS
    CHURCHILL, RC
    PECELLI, G
    ROD, DL
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 17 (02) : 329 - 348
  • [5] TRANSITION TO CHAOTIC SCATTERING
    DING, M
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICAL REVIEW A, 1990, 42 (12): : 7025 - 7040
  • [6] INTEGRABLE AND CHAOTIC MOTIONS OF 4 VORTICES .2. COLLISION DYNAMICS OF VORTEX PAIRS
    ECKHARDT, B
    AREF, H
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1988, 326 (1593): : 655 - 696
  • [7] ECKHARDT B, 1988, EPL-EUROPHYS LETT, V61, P329
  • [8] GASPARD P, 1989, J CHEM PHYS, V90, P2225, DOI 10.1063/1.456017
  • [9] HAMILTONIAN MAPPING MODELS OF MOLECULAR FRAGMENTATION
    GASPARD, P
    RICE, SA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) : 6947 - 6957
  • [10] STOCHASTIC-BEHAVIOR IN QUANTUM SCATTERING
    GUTZWILLER, MC
    [J]. PHYSICA D, 1983, 7 (1-3): : 341 - 355