ON A POSSIBLE ORIGIN OF QUANTUM GROUPS

被引:19
作者
FLATO, M
STERNHEIMER, D
机构
[1] UA CNRS 1102, Laboratoire de Physique-Mathématique, Université de Bourgogne, Dijon Cedex, F-21004
关键词
D O I
10.1007/BF00405180
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Poisson bracket structure having the commutation relations of the quantum group SL(q)(2) is quantized by means of the Moyal star-product on C-infinity-(R2), showing that quantum groups are not exactly quantizations, but require a quantization (with another parameter) in the background. The resulting associative algebra is a strongly invariant nonlinear star-product realization of the q-algebra U(q)(sl(2)). The principle of stron invariance (the requirement that the star-commutator is star-expressed, up to a phase, by the same function as its classical limit) implies essentially the uniqueness of the commutation relations of U(q)(sl(2)).
引用
收藏
页码:155 / 160
页数:6
相关论文
共 16 条
[1]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[2]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[3]   ALGEBRAIC QUANTIZATION [J].
BERGER, R .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (04) :275-283
[4]   SUQ,H-]0(2) AND SUQ,H(2), THE CLASSICAL AND QUANTUM Q-DEFORMATIONS OF THE SU(2) ALGEBRA [J].
CHANG, Z ;
CHEN, W ;
GUO, HY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :4185-4190
[5]   SUQ,H-]0(2) AND SUQ,H(2), THE CLASSICAL AND QUANTUM Q-DEFORMATIONS OF THE SU(2) ALGEBRA .2. THE HOPF ALGEBRA, THE YANG-BAXTER EQUATION AND MULTI-DEFORMED ALGEBRAIC STRUCTURES [J].
CHANG, Z ;
CHEN, W ;
GUO, HY ;
YAN, H .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23) :5371-5382
[6]  
DRINFELD VG, 1986, P INT C MATH BERKELE, V1, P798
[7]   ON THE THEORY OF QUANTUM GROUPS [J].
DUBOISVIOLETTE, M .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (02) :121-126
[8]  
Faddeev L.D., 1987, HAMILTONIAN METHODS
[9]   REMARKS ON QUANTUM GROUPS [J].
FLATO, M ;
LU, ZC .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 21 (01) :85-88
[10]   A Q-DIFFERENCE ANALOG OF U(G) AND THE YANG-BAXTER EQUATION [J].
JIMBO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (01) :63-69