REDUCTION OF TODA LATTICE HIERARCHY TO GENERALIZED KDV HIERARCHIES AND THE 2-MATRIX MODEL

被引:16
作者
ARATYN, H
NISSIMOV, E
PACHEVA, S
ZIMERMAN, AH
机构
[1] BEN GURION UNIV NEGEV,DEPT PHYS,IL-84105 BEER SHEVA,ISRAEL
[2] UNESP,INST FIS TEOR,BR-01405900 SAO PAULO,BRAZIL
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1995年 / 10卷 / 17期
关键词
D O I
10.1142/S0217751X95001212
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Toda lattice hierarchy and the associated matrix formulation of the 2M-boson KP hierarchies provide a framework for the Drinfeld-Sokolov reduction scheme realized through Hamiltonian action within the second KP Poisson bracket. By working with free currents, which Abelianize the second KP Hamiltonian structure, we are able to obtain a unified formalism for the reduced SL(M + 1, M - k) KdV hierarchies interpolating between the ordinary KP and KdV hierarchies. The corresponding Lax operators are given as superdeterminants of graded SL(M + 1, M - k) matrices in the diagonal gauge and we describe their bracket structure and field content. In particular, we provide explicit free field representations of the associated W(M, M - k) Poisson bracket algebras generalising the familiar nonlinear W-M+1 algebra. Discrete Backlund transformations for SL(M + 1, M - k) KdV are generated naturally from lattice translations in the underlying Toda-like hierarchy. As an application we demonstrate the equivalence of the two-matrix string model to the SL(M + 1, 1) KdV hierarchy.
引用
收藏
页码:2537 / 2577
页数:41
相关论文
共 77 条
[61]  
Reyman A.G., 1982, J SOV MATH, V19, P1507, DOI [10.1007/BF01091461, DOI 10.1007/BF01091461]
[62]  
SEMENOVTYANSHAN.MA, 1983, FUNCT ANAL APPL+, V17, P259
[63]  
Toda M, 1989, THEORY NONLINEAR LAT
[64]  
Ueno K., 1984, GROUP REPRESENTATION, V4, P1
[65]  
Wadati M., 1976, Progress of Theoretical Physics Supplement, P36, DOI 10.1143/PTPS.59.36
[66]  
WADATI M, 1980, SOLITONS
[67]  
WU YS, HEPTH9210162
[68]  
WU YS, 1992, 21 P INT C DIFF GEOM
[69]  
WU YS, HEPTH9210117
[70]  
WU YS, HEPTH9112009