CONVERGENCE-RATES IN DENSITY-ESTIMATION FOR DATA FROM INFINITE-ORDER MOVING AVERAGE PROCESSES

被引:52
作者
HALL, P [1 ]
HART, JD [1 ]
机构
[1] TEXAS A&M UNIV SYST,DEPT STAT,COLLEGE STN,TX 77843
关键词
D O I
10.1007/BF01198432
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The effect of long-range dependence in nonparametric probability density estimation is investigated under the assumption that the observed data are a sample from a stationary, infinite-order moving average process. It is shown that to first order, the mean integrated squared error (MISE) of a kernel estimator for moving average data may be expanded as the sum of MISE of the kernel estimator for a same-size random sample, plus a term proportional to the variance of the moving average sample mean. The latter term does not depend on bandwidth, and so imposes a ceiling on the convergence rate of a kernel estimator regardless of how bandwidth is chosen. This ceiling can be quite significant in the case of long-range dependence. We show that all density estimators have the convergence rate ceiling possessed by kernel estimators. © 1990 Springer-Verlag.
引用
收藏
页码:253 / 274
页数:22
相关论文
共 18 条
[11]   SOME LONG-RUN PROPERTIES OF GEOPHYSICAL RECORDS [J].
MANDELBR.BB ;
WALLIS, JR .
WATER RESOURCES RESEARCH, 1969, 5 (02) :321-&
[12]  
Priestley M.B., 1981, SPECTRAL ANAL TIME S
[13]   ON THE CONSISTENCY AND FINITE-SAMPLE PROPERTIES OF NONPARAMETRIC KERNEL TIME-SERIES REGRESSION, AUTOREGRESSION AND DENSITY ESTIMATORS [J].
ROBINSON, PM .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1986, 38 (03) :539-549
[14]  
Rosenblatt M., 1970, NONPARAMETRIC TECHNI, P199
[15]  
Samorov A, 1988, J TIME SER ANAL, V9, P191, DOI 10.1111/j.1467-9892.1988.tb00463.x
[16]  
Silverman B. W., 1986, MONOGR STAT APPL PRO
[17]   OPTIMAL GLOBAL RATES OF CONVERGENCE FOR NONPARAMETRIC REGRESSION [J].
STONE, CJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1040-1053
[18]   WEAK CONVERGENCE TO FRACTIONAL BROWNIAN-MOTION AND TO ROSENBLATT PROCESS [J].
TAQQU, MS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1975, 31 (04) :287-302