SPECTRAL THEORY, ZETA-FUNCTIONS AND THE DISTRIBUTION OF PERIODIC POINTS FOR COLLET ECKMANN MAPS

被引:87
作者
KELLER, G [1 ]
NOWICKI, T [1 ]
机构
[1] UNIV WARSAW,PL-00325 WARSAW,POLAND
关键词
D O I
10.1007/BF02096623
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study unimodal interval maps T with negative Schwarzian derivative satisfying the Collet-Eckmann condition \DT(n)(Tc)\ greater-than-or-equal-to K-lambda(c)n for some constants K > 0 and lambda(c) > 1 (c is the critical point of T). We prove exponential mixing properties of the unique invariant probability density of T, describe the long term behaviour of typical (in the sense of Lebesgue measure) trajectories by Central Limit and Large Deviations Theorems for partial sum processes of the form S(n) = SIGMA(i=0)n-1f(T(i)x), and study the distribution of "typical" periodic orbits, also in the sense of a Central Limit Theorem and a Large Deviations Theorem. This is achieved by proving quasicompactness of the Perron Frobenius operator and of similar transfer operators for the Markov extension of T and relating the isolated eigenvalues of these operators to the poles of the corresponding Ruelle zeta functions.
引用
收藏
页码:31 / 69
页数:39
相关论文
共 44 条
[1]   ZETA-FUNCTIONS AND TRANSFER OPERATORS FOR PIECEWISE MONOTONE TRANSFORMATIONS [J].
BALADI, V ;
KELLER, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 127 (03) :459-477
[2]   THE DYNAMICS OF THE HENON MAP [J].
BENEDICKS, M ;
CARLESON, L .
ANNALS OF MATHEMATICS, 1991, 133 (01) :73-169
[3]  
BLOKH AM, 1989, FUNCT ANAL APPL, V23, P59
[4]  
BLOKH AM, 1990, MEASURABLE DYNAMICS
[5]  
Collet P., 1983, ERGOD THEOR DYN SYST, V3, P13
[6]   LARGE DEVIATIONS FOR POISSON SYSTEMS OF INDEPENDENT RANDOM-WALKS [J].
COX, JT ;
GRIFFEATH, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 66 (04) :543-558
[7]   A STRUCTURE THEOREM IN ONE DIMENSIONAL DYNAMICS [J].
DEMELO, W ;
VANSTRIEN, S .
ANNALS OF MATHEMATICS, 1989, 129 (03) :519-546
[8]  
DZEWC B, 1984, ERGOD THEOR DYN, V4, P613
[9]  
GUCKENHEIMER J, 1990, ANN MATH, V132, P73
[10]   MEROMORPHIC EXTENSION OF THE ZETA-FUNCTION FOR AXIOM A FLOWS [J].
HAYDN, NTA .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :347-360