CONTINUOUS QUANTUM JUMPS AND INFINITE-DIMENSIONAL STOCHASTIC-EQUATIONS

被引:69
作者
GATAREK, D
GISIN, N
机构
[1] UNIV GENEVA,PHYS APPL GRP,CH-1211 GENEVA 4,SWITZERLAND
[2] UNIV BONN,W-5300 BONN,GERMANY
关键词
D O I
10.1063/1.529188
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From a mathematical point of view, a class of infinite-dimensional stochastic differential equations describing continuous spontaneous localization in quantum dynamics will be studied. Existence and uniqueness of weak and strong solutions of respective equations are proven via Cameron-Martin-Girsanov transformation. The case of Gaussian initial states is explicitly solved.
引用
收藏
页码:2152 / 2157
页数:6
相关论文
共 42 条
[31]  
PARDOUX E, 1975, THESIS U PARIS 9
[32]   REDUCTION OF STATE VECTOR BY A NONLINEAR SCHRODINGER EQUATION [J].
PEARLE, P .
PHYSICAL REVIEW D, 1976, 13 (04) :857-868
[33]   COMBINING STOCHASTIC DYNAMICAL STATE-VECTOR REDUCTION WITH SPONTANEOUS LOCALIZATION [J].
PEARLE, P .
PHYSICAL REVIEW A, 1989, 39 (05) :2277-2289
[34]   STOCHASTIC DYNAMIC REDUCTION THEORIES AND SUPERLUMINAL COMMUNICATION [J].
PEARLE, P .
PHYSICAL REVIEW D, 1986, 33 (08) :2240-2252
[35]  
PEARLE P, 1979, PHYS REV D, V48, P489
[36]  
PEARLE P, 1984, INT J THEOR PHYS, V52, P1657
[37]   CAN GRW THEORY BE TESTED BY EXPERIMENTS ON SQUIDS [J].
RAE, AIM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (02) :L57-L60
[38]  
SHIMONY A, 1983, F QUANTUM MECHANICS
[39]   SPECIAL RELATIVITY AND REALISM IN QUANTUM PHYSICS [J].
SQUIRES, EJ .
PHYSICS LETTERS A, 1990, 145 (6-7) :297-298
[40]  
VIOT M, 1974, CR ACAD SCI A MATH, V278, P1185