Using a microdialysis method, we have investigated effects of the voltage-dependent calcium channel blockers, verapamil, nicardipine, omega-conotoxin and flunarizine on the dopamine release and metabolism in the striatum of freely moving rat. Perfusion of verapamil (1-300-mu-M) and nicardipine (1-100-mu-M), an L-type calcium channel blocker, into the striatum through the dialysis membrane showed a dose-dependent decrease of dopamine release in the dialysate and slight increase of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. Treatment of omega-conotoxin (0.1, 1-mu-M), an N-type channel blocker, decreased about 50% basal dopamine release and slightly decreased DOPAC and HVA levels. Treatment with flunarizine (10-mu-M), an T-type channel blocker, did not affect the dopamine release and metabolism. From these data, it appears that treatments of the L- and N-type voltage-dependent calcium channel blockers in rat striatum suppress basal dopamine release, but T-type blocker does not suppress it, suggesting that L-, N- and T-type calcium channels regulate in vivo dopamine release in a different mechanism.