RIBBON GRAPHS AND THEIR INVARIANTS DERIVED FROM QUANTUM GROUPS

被引:611
作者
RESHETIKHIN, NY
TURAEV, VG
机构
[1] L.O.M.I., Leningrad, SU-191001
关键词
D O I
10.1007/BF02096491
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalization of Jones polynomial of links to the case of graphs in R3 is presented. It is constructed as the functor from the category of graphs to the category of representations of the quantum groups. © 1990 Springer-Verlag.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 25 条
[1]  
BREMMER MR, 1984, TABLES DOMINANT WEIG
[2]  
DELING P, 1982, LECTURE NOTES MATH, V900
[3]  
DRINFELD VG, 1986, P INT C MATH BERKELE, V1, P798
[4]  
DRINFELD VG, 1989, ALGEBRA ANAL, V1
[5]  
FREYD PJ, 1987, BRAIDED COMPACT CLOS
[6]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[7]  
JOYAL A, 1986, 860081 MACQ MATH REP
[8]  
KAUFFMAN LH, 1987, LINK POLYNOMIALS GRA
[9]  
KIRILLOV AN, 1988, ZAP NAUCH SEMIN, V170
[10]  
LUZTIG G, 1987, QUANTUM DEFORMATIONS