RIBBON GRAPHS AND THEIR INVARIANTS DERIVED FROM QUANTUM GROUPS

被引:611
作者
RESHETIKHIN, NY
TURAEV, VG
机构
[1] L.O.M.I., Leningrad, SU-191001
关键词
D O I
10.1007/BF02096491
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generalization of Jones polynomial of links to the case of graphs in R3 is presented. It is constructed as the functor from the category of graphs to the category of representations of the quantum groups. © 1990 Springer-Verlag.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 25 条
[11]  
MacLane S., 1963, RICE U STUD, V49, P28
[12]   CLASSICAL AND QUANTUM CONFORMAL FIELD-THEORY [J].
MOORE, G ;
SEIBERG, N .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (02) :177-254
[13]  
RESHETIKHIN NY, 1988, LOMI E1787 PREPR
[14]  
RESHETIKHIN NY, 1988, ALGEBRA ANAL, V1
[15]  
RESHKETIKHIN NY, 1988, LOMI E487 PREPR
[16]  
ROSSO M, 1987, CR ACAD SCI I-MATH, V305, P587
[17]   VERTEX OPERATORS IN THE CONFORMAL FIELD-THEORY ON P1 AND MONODROMY REPRESENTATIONS OF THE BRAID GROUP [J].
TSUCHIYA, A ;
KANIE, Y .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (04) :303-312
[18]   THE YANG-BAXTER EQUATION AND INVARIANTS OF LINKS [J].
TURAEV, VG .
INVENTIONES MATHEMATICAE, 1988, 92 (03) :527-553
[19]  
TURAEV VG, IN PRESS IZV AN SSSR
[20]  
TURAEV VG, 1988, LOMI E688 PREPR