SPATIOTEMPORAL DISTRIBUTION OF ACIDIC AND BASIC FGF INDICATES A ROLE FOR FGF IN RAT LENS MORPHOGENESIS

被引:67
作者
DEIONGH, R [1 ]
MCAVOY, JW [1 ]
机构
[1] UNIV SYDNEY, DEPT ANAT & HISTOL F13, SYDNEY, NSW 2006, AUSTRALIA
关键词
CILIARY BODY; EYE; FIBROBLAST GROWTH FACTOR; LENS DEVELOPMENT; LENS EPITHELIAL CELLS; LENS FIBER CELLS; RETINA;
D O I
10.1002/aja.1001980305
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
As part of an investigation into the role of FGF in lens development, we have studied the distribution of both aFGF and bFGF during eye morphogenesis from embryonic days 10 to 18 (E10-E18) in the rat. For aFGF, reactivity was found only in ectoderm at E10, prior to contact between the optic vesicle and presumptive lens ectoderm. During lens placode formation (Ell) there was a transient, diffuse reactivity for aFGF in anterior optic vesicle cells directly apposed to the labelled ectoderm of the lens placode. At E12 the diffuse reactivity of the lens placode had changed to a discrete localisation along the basolateral surfaces of differentiating cells in the lens pit. Similar reactivity was associated with neuroblasts along the inner margin of the optic cup. At the early lens vesicle stage (E13) the base-lateral aFGF-like reactivity associated with elongating lens cells was more intense and extensive. From the late lens vesicle stage (E14) to E18, reactivity in the lens was increasingly restricted to the equatorial regions which incorporate the germinative and transitional zones. From E16 to E18, aFGF-like reactivity in the retina was predominantly localised in the peripheral regions corresponding to the developing ciliary body and iris and in the central retina associated with ganglion cell axons. For bFGF, weak reactivity was detectable as early as E13 in the developing lens capsule and increased in intensity during lens development with the posterior capsule reacting more intensely than the anterior capsule. Retinal bFGF-like reactivity was first detected at E14, associated with differentiating ganglion cells in the central retina. From E16 to E18 the retinal ganglion cells showed increasing reactivity and the pattern of reactivity followed the centro-peripheral pattern of retinal development. Thus reactivity for aFGF is first detected in presumptive lens ectoderm and subsequently in optic vesicle cells which are closely associated with lens ectoderm. This raises the possibility that aFGF may be involved in inductive interactions between presumptive lens ectoderm and optic vesicle. Furthermore the localisation patterns established for both aFGF and bFGF during lens and retina morphogenesis suggest an important role for FGF in regulating their morphogenesis and growth.
引用
收藏
页码:190 / 202
页数:13
相关论文
共 43 条
[1]   ABILITY OF ADULT-RAT GANGLION-CELLS TO REGROW AXONS INVITRO CAN BE INFLUENCED BY FIBROBLAST GROWTH-FACTOR AND GANGLIOSIDES [J].
BAHR, M ;
VANSELOW, J ;
THANOS, S .
NEUROSCIENCE LETTERS, 1989, 96 (02) :197-201
[2]  
BAIRD A, 1991, ANN NY ACAD SCI, V638, pR13
[3]   TRANSLOCATION OF BFGF TO THE NUCLEUS IS G1 PHASE CELL-CYCLE SPECIFIC IN BOVINE AORTIC ENDOTHELIAL-CELLS [J].
BALDIN, V ;
ROMAN, AM ;
BOSCBIERNE, I ;
AMALRIC, F ;
BOUCHE, G .
EMBO JOURNAL, 1990, 9 (05) :1511-1517
[4]  
BELFORD DA, 1989, NEUROSCI LETT S, V34, pS58
[5]   BASIC FIBROBLAST GROWTH-FACTOR ENTERS THE NUCLEOLUS AND STIMULATES THE TRANSCRIPTION OF RIBOSOMAL GENES IN ABAE CELLS UNDERGOING G0-]G1 TRANSITION [J].
BOUCHE, G ;
GAS, N ;
PRATS, H ;
BALDIN, V ;
TAUBER, JP ;
TEISSIE, J ;
AMALRIC, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (19) :6770-6774
[6]   ALTERNATIVE INITIATION OF TRANSLATION DETERMINES CYTOPLASMIC OR NUCLEAR-LOCALIZATION OF BASIC FIBROBLAST GROWTH-FACTOR [J].
BUGLER, B ;
AMALRIC, F ;
PRATS, H .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (01) :573-577
[7]   THE HEPARIN-BINDING (FIBROBLAST) GROWTH-FACTOR FAMILY OF PROTEINS [J].
BURGESS, WH ;
MACIAG, T .
ANNUAL REVIEW OF BIOCHEMISTRY, 1989, 58 :575-606
[8]   Induction of Lens Fibre Differentiation by Acidic and Basic Fibroblast Growth Factor (FGF) [J].
Chamberlain, Coral G. ;
McAvoy, John W. .
GROWTH FACTORS, 1989, 1 (02) :125-134
[9]  
de Iongh R, 1992, GROWTH FACTORS, V6, P159
[10]  
DEIONGH R, 1993, INVEST OPHTH VIS SCI, V34, P755