ON THE APPROXIMATE EVALUATION OF HADAMARD FINITE-PART INTEGRALS

被引:8
作者
DELBOURGO, D
ELLIOTT, D
机构
[1] Department of Mathematics, University of Tasmania, Hobart, TAS 7001
基金
澳大利亚研究理事会;
关键词
D O I
10.1093/imanum/14.4.485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Grunwald's algorithms for the numerical evaluation of Hadamard finite-part integrals with non-integer exponent are extended to the case of integer exponent. These algorithms are based on the use of Bernstein polynomials and it is shown how, by an appropriate modification of the first algorithm, a convergence rate of order 1/N2 may be obtained, where N is the number of function evaluations.
引用
收藏
页码:485 / 500
页数:16
相关论文
共 9 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
DELBOURGO D, 1992, THESIS U TASMANIA
[3]   AN ASYMPTOTIC ANALYSIS OF 2 ALGORITHMS FOR CERTAIN HADAMARD FINITE-PART INTEGRALS [J].
ELLIOTT, D .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1993, 13 (03) :445-462
[4]  
Grunwald AK., 1867, Z ANGEW MATH PHYS, V12, P5
[5]   ON THE SOLUTION OF INTEGRAL-EQUATIONS WITH STRONGLY SINGULAR KERNELS [J].
KAYA, AC ;
ERDOGAN, F .
QUARTERLY OF APPLIED MATHEMATICS, 1987, 45 (01) :105-122
[6]  
KUTT HR, 1975, CSIR WISK178 NAT RES
[7]   ON THE APPROXIMATE COMPUTATION OF CERTAIN STRONGLY SINGULAR-INTEGRALS [J].
LINZ, P .
COMPUTING, 1985, 35 (3-4) :345-353
[8]  
Lorentz GG, 1953, BERNSTEIN POLYNOMIAL
[9]   THE NUMERICAL EVALUATION OF HADAMARD FINITE-PART INTEGRALS [J].
PAGET, DF .
NUMERISCHE MATHEMATIK, 1981, 36 (04) :447-453