UNSTEADY SEDIMENT-TRANSPORT MODELING

被引:71
作者
LYN, DA
机构
[1] California Inst of Technology,, Pasadena, CA, USA, California Inst of Technology, Pasadena, CA, USA
来源
JOURNAL OF HYDRAULIC ENGINEERING-ASCE | 1987年 / 113卷 / 01期
关键词
MATHEMATICAL MODELS - RESERVOIRS - Sedimentation - RIVERS - Discharge;
D O I
10.1061/(ASCE)0733-9429(1987)113:1(1)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The standard one-dimensional equations of unsteady sediment-transport are examined, and multiple time (or length) scales are identified. The existence of multiple scales may lead to a singularly perturbed behavior that should be taken into account in any general numerical model. Previous models, which reduce the number of conservation equations solved simultaneously from three to two, are seen to be unable to satisfy exactly either a general boundary condition or a general initial condition. Implications for numerical modeling are explored. Numerical results for the model problem of sediment-deposition upstream of a dam illustrate the analytical argument.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 19 条
[11]   STABILITY OF A GENERAL PREISSMANN SCHEME [J].
LYN, DA ;
GOODWIN, P .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1987, 113 (01) :16-28
[12]  
MAHMOOD K, 1975, 14TH P C INT ASS HYD, V2
[13]  
MAHMOOD K, 1976, CER7576KMVMP28 COL S
[14]  
PONCE VM, 1979, J HYDR ENG DIV-ASCE, V105, P245
[15]  
PONCE VM, 1978, J HYDR ENG DIV-ASCE, V104, P947
[16]  
SUGA K, 1969, 13TH P C INT ASS HYD, V1, P289
[17]  
VANDYKE M, 1970, PERTURBATION METHODS
[18]  
Whitham G. B., 1974, LINEAR NONLINEAR WAV, P114
[19]  
1983, EVALUATION FLOOD LEV