NUMERICAL INTEGRATION METHODS FOR ORBITAL MOTION

被引:3
作者
Montenbruck, O. [1 ]
机构
[1] GSOC, Deutsch Forsch Anstalt Luft & Raumfahrt, DW-8031 Oberpfaffenhofen, Germany
关键词
Numerical Integration; Runge-Kutta Methods; Multistep Methods; Extrapolation Methods; Orbit Computation;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The present report compares Runge-Kutta, multistep and extrapolation methods for the numerical integration of ordinary differential equations and assesses their usefulness for orbit computations of solar system bodies or artificial satellites. The scope of earlier studies is extended by including various methods that have been developed only recently. Several performance tests reveal that modem single- and multistep methods can be similarly efficient over a wide range of eccentricities. Multistep methods are still preferable, however, for ephemeris predictions with a large number of dense output points.
引用
收藏
页码:59 / 69
页数:11
相关论文
共 40 条
[31]  
SCHUTZ BE, 1980, 801 TR U TEX AUST DE
[32]  
Shampine L. F., 1979, SAND792374
[33]  
SHAMPINE LF, 1982, 196 SFB U HEID
[34]  
SHAMPINE LF, 1975, COMPUTER SOLUTION OR
[35]  
Sitarski G., 1979, Acta Astronomica, V29, P401
[36]  
SOOP EM, 1983, ESA
[37]  
STOER J, 1983, INTRO NUMERICAL ANAL
[38]  
WANNER G, 1969, INTEGRATION DIFFEREN
[39]   SMOOTHER INTERPOLANTS FOR ADAMS CODES [J].
WATTS, HA ;
SHAMPINE, LF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (01) :334-345
[40]  
[No title captured]