THE DIRAC-COULOMB PROBLEM FOR THE KAPPA-POINCARE QUANTUM GROUP

被引:38
作者
BIEDENHARN, LC
MUELLER, B
TARLINI, M
机构
[1] DUKE UNIV, DEPT PHYS, DURHAM, NC 27708 USA
[2] UNIV FIRENZE, INFN, DIPARTIMENTO FIS, I-50125 FLORENCE, ITALY
关键词
D O I
10.1016/0370-2693(93)90462-Q
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently introduced kappa-Poincare-Dirac equation is gauged to treat the kappa-Dirac-Coulomb problem. For the resulting equation, we prove that the perturbation to first order in the quantum group parameter vanishes identically. The second order perturbation is singular, but assuming a heuristic cut-off allows a qualitative estimate of the quantum group parameter.
引用
收藏
页码:613 / 616
页数:4
相关论文
共 18 条
[1]   ON Q-TENSOR OPERATORS FOR QUANTUM GROUPS [J].
BIEDENHARN, LC ;
TARLINI, M .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (04) :271-278
[2]  
CASTELLANI L, DFTT1992 PREPR
[3]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158
[4]  
CELEGHINI E, 1992, LECT NOTES MATH, V1510, P221
[5]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[6]   THE 3-DIMENSIONAL EUCLIDEAN QUANTUM GROUP E(3)Q AND ITS R-MATRIX [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1159-1165
[7]  
Drinfeld V.G., 1986, P INT C MATH, V1, P789
[8]   DISCRETE QUANTUM-MECHANICS [J].
FRIEDBERG, R ;
LEE, TD .
NUCLEAR PHYSICS B, 1983, 225 (01) :1-52
[9]  
GILLER S, 1992, Q COVARIANT WAVE FUN
[10]   FROM KAPPA-POINCARE ALGEBRA TO KAPPA-LORENTZ QUASIGROUP - A DEFORMATION OF RELATIVISTIC SYMMETRY [J].
LUKIERSKI, J ;
RUEGG, H ;
RUHL, W .
PHYSICS LETTERS B, 1993, 313 (3-4) :357-366