THE ADIABATIC THEOREM AND BERRYS PHASE

被引:27
作者
HOLSTEIN, BR
机构
关键词
D O I
10.1119/1.15793
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
引用
收藏
页码:1079 / 1084
页数:6
相关论文
共 34 条
[21]  
KURATSUJI H, 1986, PATH INTEGRALS MEV M
[22]   DETERMINATION OF BORN-OPPENHEIMER NUCLEAR MOTION WAVE-FUNCTIONS INCLUDING COMPLICATIONS DUE TO CONICAL INTERSECTIONS AND IDENTICAL NUCLEI [J].
MEAD, CA ;
TRUHLAR, DG .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (05) :2284-2296
[23]  
Messiah A., 1962, QUANTUM MECHANICS, V2
[24]   VIRASORO ALGEBRA IN 2+1 DIMENSIONS AND ANGULAR-MOMENTUM FRACTIONALIZATION [J].
MURTHY, G .
PHYSICAL REVIEW LETTERS, 1987, 58 (08) :755-758
[26]   DEMONSTRATION OF BERRY PHASE USING STORED ULTRACOLD NEUTRONS [J].
RICHARDSON, DJ ;
KILVINGTON, AI ;
GREEN, K ;
LAMOREAUX, SK .
PHYSICAL REVIEW LETTERS, 1988, 61 (18) :2030-2033
[27]   NON-ABELIAN ADIABATIC PHASES AND THE FRACTIONAL QUANTUM HALL-EFFECT [J].
SEMENOFF, GW ;
SODANO, P .
PHYSICAL REVIEW LETTERS, 1986, 57 (10) :1195-1198
[28]  
SHANKAR R, 1980, PRINCIPLES QUANTUM M, pCH12
[29]  
SHAPERE A, IN PRESS GEOMETRIC P
[30]   QUANTIZED HALL CONDUCTANCE IN A TWO-DIMENSIONAL PERIODIC POTENTIAL [J].
THOULESS, DJ ;
KOHMOTO, M ;
NIGHTINGALE, MP ;
DENNIJS, M .
PHYSICAL REVIEW LETTERS, 1982, 49 (06) :405-408