SOME NEW LOWER BOUNDS FOR BINARY AND TERNARY COVERING CODES

被引:9
作者
VANWEE, GJM
机构
[1] Philips Research Laboratories, 5600, JA Eindhoven
关键词
COVERINGS; COVERING CODES; COVERING RADIUS; FOOTBALL POOL PROBLEM; ROOK DOMAINS;
D O I
10.1109/18.243462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main result is a modified lower bound for binary codes with covering radius one. Let K(q)(n, R) denote the minimum cardinality of a q-ary code with covering radius R. The new bound shows that K2(11, 1) greater-than-or-equal-to 177 and that K2(17, 1) greater-than-or-equal-to 7391, improvements of the best lower bounds known. We also generalize a known lower bound for binary codes to the case of arbitrary q. For q = 3, this simple bound improves the best lower bounds known in several cases. An updated version of a table for K3(n, R) is included.
引用
收藏
页码:1422 / 1424
页数:3
相关论文
共 26 条
[1]   BINARY-CODES WITH A MINIMUM DISTANCE OF 4 [J].
BEST, MR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (06) :738-742
[2]   MORE COVERINGS BY ROOK DOMAINS [J].
BLOKHUIS, A ;
LAM, CWH .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1984, 36 (02) :240-244
[3]   LOWER BOUNDS FOR Q-ARY COVERING CODES [J].
CHEN, W ;
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (03) :664-671
[4]   FURTHER RESULTS ON THE COVERING RADIUS OF CODES [J].
COHEN, GD ;
LOBSTEIN, AC ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1986, 32 (05) :680-694
[5]   UPPER-BOUNDS FOR FOOTBALL POOL PROBLEMS AND MIXED COVERING CODES [J].
HAMALAINEN, H ;
RANKINEN, S .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 56 (01) :84-95
[6]   LOWER BOUNDS FOR BINARY COVERING CODES [J].
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (02) :326-329
[7]   MODIFIED BOUNDS FOR COVERING CODES [J].
HONKALA, IS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (02) :351-365
[8]  
KALBFLEISCH JG, 1969, J LONDON MATH SOC, V1, P398
[9]  
KALBFLEISCH JG, 1969, J LOND MATH SOC, V44, P60
[10]  
KAMPS HJL, 1967, J COMB THEORY, V3, P315