EIGENDECOMPOSITION VERSUS SINGULAR VALUE DECOMPOSITION IN ADAPTIVE ARRAY SIGNAL-PROCESSING

被引:16
作者
ORTIGUEIRA, MD
LAGUNAS, MA
机构
[1] Dep. TSC, ETSIB-UPC, 08080 Barcelona
[2] Dep. TSC, ETSIB-UPC, 08080 Barcelona
关键词
ADAPTIVE ARRAY SIGNAL PROCESSING; EIGENDECOMPOSITION; SINGULAR VALUE DECOMPOSITION; MUSIC; MIN-NORM; SUBSPACE; ARRAY MANIFOLD;
D O I
10.1016/0165-1684(91)90037-J
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Two important questions in array signal processing are addressed in this paper: the data matrix versus autocorrelation matrix alternative and the recursive implementation of subspace DOA methods. The discussion of the first question is done in face of the proposed class of recursive algorithms. These new algorithms are easily implementable and have a high degree of parallelism that is suitable for on-line implementations. Algorithms for recursive implementation of the eigendecomposition (ED) of the autocorrelation matrix and SVD of the data matrix are described. The ED/SVD trade-off is discussed.
引用
收藏
页码:35 / 49
页数:15
相关论文
共 15 条
[11]  
Ortiguera, Lagunas, A weighted minnorm method with a recursive implementation, Proc. IEEE Internat. Conf. Acoust. Speech Signal Process, (1990)
[12]  
Ortigueira, Lagunas, A recursive SVD algorithm for array signal processing, Proc. EUSIPCO-90, (1990)
[13]  
Schmidt, Multiple emitter location and signal parameter estimation, Proc. RADC Spectral Estimation Workshop, (1979)
[14]  
Schreiber, Implementation of adaptive array algorithms, IEEE Trans. Acoust. Speech Signal Process, 29, 5, (1986)
[15]  
Yang, Kaveh, Adaptive eigensubspace for direction or frequency estimation and tracking, IEEE Trans. Acoust. Speech Signal Process, 31, 2, (1988)