FUNCTIONAL RECONSTITUTION OF WILD-TYPE AND MUTANT TETRAHYMENA TELOMERASE

被引:81
作者
AUTEXIER, C [1 ]
GREIDER, CW [1 ]
机构
[1] COLD SPRING HARBOR LAB,COLD SPRING HARBOR,NY 11724
关键词
TELOMERES; TELOMERASE; RECONSTITUTION; RIBONUCLEOPROTEIN; TETRAHYMENA; MICROCOCCAL NUCLEASE;
D O I
10.1101/gad.8.5.563
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Telomerase is a ribonucleoprotein that catalyzes telomere elongation in vitro and in vivo. The 159-nucleotide RNA component of Tetrahymena telomerase contains the sequence 5'-CAACCCCAA-3' (''template region''), which serves as a template for the addition of the sequence d(TTGGGG)(n) to Tetrahymena telomeres. To dissect the Tetrahymena telomerase enzyme mechanism, we developed a functional in vitro reconstitution assay. After removal of the essential telomerase RNA by micrococcal nuclease digestion of partially purified telomerase, the addition of in vitro-transcribed telomerase RNA reconstituted telomerase activity. The reconstituted activity was processive and showed the same primer specificities as native telomerase. Mutants in the RNA template region were tested in reconstitution assays to determine the role of the residues in this region in primer recognition and elongation. Two template mutants, encoding the sequences 5'-UAACCCCAA-3' and 5'-UAACCCUAA-3', specified the incorporation of dATP into the sequence d(TTAGGG). Telomerase reconstituted with a template mutant encoding the sequence 5'-CAACCCUAA-3' did not specify dATP incorporation and elongation by this mutant was not terminated by the addition of ddATP. In addition, a template mutant encoding the sequence 5'-CGGCCCCAA-3' specified the incorporation of ddCTP but not ddTTP while a mutant encoding the sequence 5'-CAACCCCGG-3' specified the incorporation of ddTTP but not ddCTP. These data suggest that only the most 5' six residues of the template region dictate the addition of telomeric repeats.
引用
收藏
页码:563 / 575
页数:13
相关论文
共 51 条
[1]   TELOMERE LENGTH PREDICTS REPLICATIVE CAPACITY OF HUMAN FIBROBLASTS [J].
ALLSOPP, RC ;
VAZIRI, H ;
PATTERSON, C ;
GOLDSTEIN, S ;
YOUNGLAI, EV ;
FUTCHER, AB ;
GREIDER, CW ;
HARLEY, CB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (21) :10114-10118
[2]   TETRAHYMENA TELOMERASE RNA LEVELS INCREASE DURING MACRONUCLEAR DEVELOPMENT [J].
AVILION, AA ;
HARRINGTON, LA ;
GREIDER, CW .
DEVELOPMENTAL GENETICS, 1992, 13 (01) :80-86
[3]   GENETICS AND MOLECULAR-BIOLOGY OF TELOMERES [J].
BIESSMANN, H ;
MASON, JM .
ADVANCES IN GENETICS, 1992, 30 :185-249
[4]   STRUCTURE AND FUNCTION OF TELOMERES [J].
BLACKBURN, EH .
NATURE, 1991, 350 (6319) :569-573
[6]   TETRAHYMENA TELOMERASE CATALYZES NUCLEOLYTIC CLEAVAGE AND NONPROCESSIVE ELONGATION [J].
COLLINS, K ;
GREIDER, CW .
GENES & DEVELOPMENT, 1993, 7 (7B) :1364-1376
[7]   TELOMERE SHORTENING ASSOCIATED WITH CHROMOSOME INSTABILITY IS ARRESTED IN IMMORTAL CELLS WHICH EXPRESS TELOMERASE ACTIVITY [J].
COUNTER, CM ;
AVILION, AA ;
LEFEUVRE, CE ;
STEWART, NG ;
GREIDER, CW ;
HARLEY, CB ;
BACCHETTI, S .
EMBO JOURNAL, 1992, 11 (05) :1921-1929
[8]   THE ABSENCE OF MODIFIED NUCLEOTIDES AFFECTS BOTH INVITRO ASSEMBLY AND INVITRO FUNCTION OF THE 30S-RIBOSOMAL SUBUNIT OF ESCHERICHIA-COLI [J].
CUNNINGHAM, PR ;
RICHARD, RB ;
WEITZMANN, CJ ;
NURSE, K ;
OFENGAND, J .
BIOCHIMIE, 1991, 73 (06) :789-796
[9]   Telomeres [J].
Greider, Carol W. .
CURRENT OPINION IN CELL BIOLOGY, 1991, 3 (03) :444-451
[10]   A TELOMERIC SEQUENCE IN THE RNA OF TETRAHYMENA TELOMERASE REQUIRED FOR TELOMERE REPEAT SYNTHESIS [J].
GREIDER, CW ;
BLACKBURN, EH .
NATURE, 1989, 337 (6205) :331-337