A BERNSTEIN RESULT FOR ENERGY MINIMIZING HYPERSURFACES

被引:15
作者
DIERKES, U [1 ]
机构
[1] UNIV BONN,INST ANGEW MATH,W-5300 BONN 1,GERMANY
关键词
D O I
10.1007/BF02163263
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that there are no entire, positive, stable solutions in R(n) of the Euler equation corresponding to the singular variational integral integral u(alpha) square-root 1+\Du\2 dx, alpha > 0, if alpha + n < 5.236.... Furthermore we prove a related result for smooth boundaries of least alpha-energy integral \x(n+1)\alpha\Dphi(U)\ in R(n+1).
引用
收藏
页码:37 / 54
页数:18
相关论文
共 33 条
[2]  
[Anonymous], 1983, ELLIPTIC PARTIAL DIF
[3]  
BEMELMANS J, 1987, ARCH RATION MECH AN, V100, P838
[4]  
Bernstein S., 1914, COMM SOC MATH KHARKO, V15, P38
[5]  
BOHME R, 1980, PAC J MATH, V88, P247
[6]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[7]  
CAFFARELLI L, FORM BERNSTEINS THEO
[8]   COMPLETE MINIMAL SURFACES IN EUCLIDEAN N-SPACE [J].
CHERN, SS ;
OSSERMAN, R .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 :15-&
[9]  
De Giorgi E., 1965, ANN SCUOLA NORM SUP, V19, P79
[10]   ON THE NONEXISTENCE OF ENERGY STABLE MINIMAL CONES [J].
DIERKES, U .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (06) :589-601