OPTIMAL CONTROLLERS AND OUTPUT-FEEDBACK STABILIZATION

被引:12
作者
TSINIAS, J [1 ]
机构
[1] NATL TECH UNIV ATHENS,DEPT MATH,GR-15773 ATHENS,GREECE
关键词
Lyapunov functions; Nonlinear systems; optimal;
D O I
10.1016/0167-6911(90)90100-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the output feedback stabilizability problem is explored in terms of control Lyapunov functions. Sufficient conditions for stabilization are provided for a certain class of systems by means of output feedback stabilizers that can be obtained from an optimization problem. Our main results extends those developed in [31] and generalize a theorem due to Sontag [23]. © 1990.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 37 条
[22]   A LYAPUNOV-LIKE CHARACTERIZATION OF ASYMPTOTIC CONTROLLABILITY [J].
SONTAG, ED .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1983, 21 (03) :462-471
[23]   A UNIVERSAL CONSTRUCTION OF ARTSTEIN THEOREM ON NONLINEAR STABILIZATION [J].
SONTAG, ED .
SYSTEMS & CONTROL LETTERS, 1989, 13 (02) :117-123
[24]  
SONTAG ED, 1980, DEC P IEEE C DEC CON, P916
[25]  
SONTAG ED, 1990, IN PRESS IEEE T AUTO
[26]  
SONTAG ED, 1989, SYSTEMS CONTROL LETT, V12, P273
[27]   SUBANALYTIC SETS AND FEEDBACK-CONTROL [J].
SUSSMANN, HJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 31 (01) :31-52
[28]  
SUSSMANN HJ, 1989, SYCON8907 RUTG CTR S
[29]   STABILIZATION OF AFFINE IN CONTROL NONLINEAR-SYSTEMS [J].
TSINIAS, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1283-1296
[30]  
Tsinias J., 1989, Mathematics of Control, Signals, and Systems, V2, P343, DOI 10.1007/BF02551276