MATRIX MODELS, ONE-DIMENSIONAL FERMIONS, AND QUANTUM CHAOS

被引:94
作者
SIMONS, BD
LEE, PA
ALTSHULER, BL
机构
[1] Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
关键词
D O I
10.1103/PhysRevLett.72.64
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent studies of universal parametric correlations in quantum chaotic spectra have revealed an astonishing connection to an integrable one-dimensional quantum system. We introduce a continuous matrix model which establishes a direct connection between the quantum Hamiltonian and the exact field theoretic description of spectral correlations. This reveals a common mathematical structure which underlies quantum chaos, matrix models, and a quantum Hamiltonian.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 35 条
[31]   EXACT RESULTS FOR A QUANTUM MANY-BODY PROBLEM IN ONE DIMENSION [J].
SUTHERLAND, B .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1971, 4 (05) :2019-+
[32]   QUANTUM MANY-BODY PROBLEM IN ONE DIMENSION - THERMODYNAMICS [J].
SUTHERLAND, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (02) :251-+
[33]   QUANTUM MANY-BODY PROBLEM IN ONE DIMENSION - GROUND STATE [J].
SUTHERLAND, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (02) :246-+
[34]   PLANAR DIAGRAM THEORY FOR STRONG INTERACTIONS [J].
THOOFT, G .
NUCLEAR PHYSICS B, 1974, B 72 (03) :461-473
[35]   GRASSMANN INTEGRATION IN STOCHASTIC QUANTUM PHYSICS - THE CASE OF COMPOUND NUCLEUS SCATTERING [J].
VERBAARSCHOT, JJM ;
WEIDENMULLER, HA ;
ZIRNBAUER, MR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 129 (06) :367-438