HYPERBOLIC PHENOMENA IN A STRONGLY DEGENERATE PARABOLIC EQUATION

被引:64
作者
BERTSCH, M [1 ]
DALPASSO, R [1 ]
机构
[1] IST APPLICAZ CALCOLO,I-00161 ROME,ITALY
关键词
D O I
10.1007/BF00376188
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the equation u(t) = (phi(u) psi(u(x)))x, where phi > 0 and where psi is a strictly increasing function with lim(s-->infinity) psi(s) = psi(infinity) < infinity. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u(t) = psi(infinity) (phi(u))x. Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.
引用
收藏
页码:349 / 387
页数:39
相关论文
共 25 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
ANZELLOTTI G, 1986, REND SEM MAT U PADOV, V75, P31
[3]  
ARONSON DG, 1986, SPRINGER LECT NOTES, V1224
[4]  
ATKINSON FV, 1988, MATH SCI RES I PUBL, V12, P51
[5]   REGULARITY RESULTS FOR AN ELLIPTIC-PARABOLIC FREE-BOUNDARY PROBLEM [J].
BERTSCH, M ;
HULSHOF, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 297 (01) :337-350
[6]   A POSITIVITY PROPERTY OF SOLUTIONS OF NONLINEAR DIFFUSION-EQUATIONS [J].
BERTSCH, M ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 53 (01) :30-47
[7]  
BLANC P, 1989, THESIS U LAUSANNE
[8]  
COHEN DS, IN PRESS PHYSICS LET
[9]  
DALPASSO R, UNIQUENESS ENTROPY S
[10]   LOCAL BEHAVIOR OF SOLUTIONS OF AN ELLIPTIC-PARABOLIC EQUATION [J].
DIBENEDETTO, E ;
GARIEPY, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 97 (01) :1-17