MAPPING THE S'-SUBSITES OF SERINE PROTEASES USING ACYL TRANSFER TO MIXTURES OF PEPTIDE NUCLEOPHILES

被引:88
作者
SCHELLENBERGER, V
TURCK, CW
HEDSTROM, L
RUTTER, WJ
机构
[1] UNIV CALIF SAN FRANCISCO,HORMONE RES INST,BOX 0534,SAN FRANCISCO,CA 94143
[2] UNIV CALIF SAN FRANCISCO,DEPT BIOCHEM & BIOPHYS,SAN FRANCISCO,CA 94143
[3] UNIV CALIF SAN FRANCISCO,DEPT MED,SAN FRANCISCO,CA 94143
[4] HOWARD HUGHES MED INST,SAN FRANCISCO,CA 94143
关键词
D O I
10.1021/bi00067a026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have developed a rapid and convenient procedure for the characterization of the S' subsite specificity of serine proteases. A mixture of peptide nucleophiles is incubated with the enzyme in the presence of excess of a specific ester substrate. The decrease in each nucleophile concentration is monitored by high-performance liquid chromatography analysis of the dansylated mixture. Relative kinetic parameters for each nucleophile in the mixture are then calculated using a new statistical algorithm that relates all pairs of nucleophiles. As a first application, we investigated the S'1 subsite specificity of chymotrypsin, trypsin, and a recently described trypsin mutant, Tr --> Ch [S1 + L1 + L2] with chymotrypsin-like primary specificity [Hedstrom, L., Szilagyi, L., & Rutter, W. J. (1992) Science 255, 1249-1253]. For this purpose 21 peptide nucleophiles of the general structure H-Xaa-Ala-Ala-Ala-Ala-NH2 were prepared by multiple solid-phase synthesis, where Xaa represents D-alanine, citrulline, and all natural amino acids except cysteine. Relative second-order rate constants for the enzyme-catalyzed acyl transfer to these nucleophiles were determined over a range of 10(2). Chymotrypsin and trypsin have markedly different S'1 specificities. The order of preference in chymotrypsin-catalyzed acyl transfer reactions is positively charged > aliphatic > aromatic >> negatively charged, D-Ala, Pro P'1 side chain. Trypsin prefers hydrophobic residues, but like chymotrypsin aliphatic residues are better than aromatic residues in P'1 position. The S'1 specificity of the mutant Tr --> Ch[S1 + L1 + L2] is similar to the specificity of trypsin; however, P'1 aromatic residues have low reactivity characteristic of chymotrypsin.
引用
收藏
页码:4349 / 4353
页数:5
相关论文
共 29 条
[1]  
BERMAN J, 1992, J BIOL CHEM, V267, P1434
[2]   DETERMINATION OF ENZYME SPECIFICITY IN A COMPLEX MIXTURE OF PEPTIDE-SUBSTRATES BY N-TERMINAL SEQUENCE-ANALYSIS [J].
BIRKETT, AJ ;
SOLER, DF ;
WOLZ, RL ;
BOND, JS ;
WISEMAN, J ;
BERMAN, J ;
HARRIS, RB .
ANALYTICAL BIOCHEMISTRY, 1991, 196 (01) :137-143
[3]   Ligand binding: proteinase protein inhibitor interactions [J].
Bode, Wolfram ;
Huber, Robert .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1991, 1 (01) :45-52
[4]  
BRAKE AJ, 1984, P NATL ACAD SCI-BIOL, V81, P4642, DOI 10.1073/pnas.81.15.4642
[5]   RANDOM PEPTIDE LIBRARIES - A SOURCE OF SPECIFIC PROTEIN-BINDING MOLECULES [J].
DEVLIN, JJ ;
PANGANIBAN, LC ;
DEVLIN, PE .
SCIENCE, 1990, 249 (4967) :404-406
[6]  
FASMAN GD, 1976, HDB BIOCH MOL BIOL
[7]  
FERSHT A, 1985, ENZYME STRUCTURE MEC, P112
[8]   LEAVING GROUP SPECIFICITY IN CHYMOTRYPSIN-CATALYZED HYDROLYSIS OF PEPTIDES - STEREOCHEMICAL INTERPRETATION [J].
FERSHT, AR ;
BLOW, DM ;
FASTREZ, J .
BIOCHEMISTRY, 1973, 12 (11) :2035-2041
[9]   LIGHT-DIRECTED, SPATIALLY ADDRESSABLE PARALLEL CHEMICAL SYNTHESIS [J].
FODOR, SPA ;
READ, JL ;
PIRRUNG, MC ;
STRYER, L ;
LU, AT ;
SOLAS, D .
SCIENCE, 1991, 251 (4995) :767-773
[10]   CRYSTAL AND MOLECULAR-STRUCTURES OF THE COMPLEX OF ALPHA-CHYMOTRYPSIN WITH ITS INHIBITOR TURKEY OVOMUCOID 3RD DOMAIN AT 1.8 A RESOLUTION [J].
FUJINAGA, M ;
SIELECKI, AR ;
READ, RJ ;
ARDELT, W ;
LASKOWSKI, M ;
JAMES, MNG .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 195 (02) :397-418