TOWARDS STRUCTURE-BASED DRUG DESIGN - CRYSTAL-STRUCTURE OF A MULTISUBSTRATE ADDUCT COMPLEX OF GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE AT 1.96 ANGSTROM RESOLUTION

被引:81
作者
KLEIN, C
CHEN, P
AREVALO, JH
STURA, EA
MAROLEWSKI, A
WARREN, MS
BENKOVIC, SJ
WILSON, IA
机构
[1] SCRIPPS RES INST, DEPT BIOL MOLEC, LA JOLLA, CA 92037 USA
[2] PENN STATE UNIV, DEPT CHEM, UNIVERSITY PK, PA 16802 USA
关键词
X-RAY CRYSTALLOGRAPHY; GAR-TFASE; FOLATE INHIBITORS; CANCER CHEMOTHERAPY; DRUG DESIGN;
D O I
10.1006/jmbi.1995.0286
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
An inhibitor complex structure of glycinamide ribonucleotide transformylase (GAR-Tfase; EC 2.1.2.2) from Escherichia coli has been determined with a multisubstrate adduct BW1476U89 to an X-value of 19.1% at 1.96 Angstrom resolution. The structure was determined by a combination of molecular and single isomorphous replacement using data from two different monoclinic crystal lattices and collecting data from crystals soaked in 20% (w/v) methyl-pentanediol as cryoprotectant for shock-freezing at -150 degrees C. The multisubstrate adduct is bound in an extended crevice at the interface between the two functional domains of the enzyme. This inhibitor is positioned in the binding site by three sets of tight interactions with its phosphate, glutamate and pyrimidone ring moieties, while its intervening linker atoms are more flexible and adopt two distinct sets of conformations. The highly conserved Arg103, His108 and Gln170 residues that are key in ligand binding and catalysis (His108), have compensatory conformational variation that gives some clues as to their role in substrate specificity and in the formyl transfer. The molecular design of 1476U89 as a multisubstrate adduct inhibitor (K-i similar to 100 pM at pH 8.5), is confirmed as it closely mimics the shape, molecular interaction and combined binding constants of the natural 10-formyltetrahydrofolate (10-CHO-H4F; K-m approximate to 77.4 mu M at pH 8.5) and glycinamide-ribonucleotide (GAR; K-m approximate to 8.1 mu M at pH 8.5) substrates. The stereochemistry of this ligand complex suggests that His108 may act as an electrophile stabilizing the oxyanion of the tetrahedral intermediate that is formed as a result of the direct attack on the 10-CHO-H4F by the amino group of GAR. Structural comparison of the folate binding modes among GAR-Tfase, dihydrofolate reductase and thymidylate synthase reveals that folate derivates bound to GAR-Tfase differentially adopt the trans conformation for the dihedral angle between atoms C-6 and C-9 providing a handle for targeting specific folate-dependent enzymes. The structural information derived from two different discrete conformations of the ligand in the binding site also suggests several leads for the de novo design of inhibitors of GAR-Tfase that may develop into useful chemotherapeutic agents.
引用
收藏
页码:153 / 175
页数:23
相关论文
共 78 条
[1]   DENOVO PURINE NUCLEOTIDE BIOSYNTHESIS - CLONING OF HUMAN AND AVIAN CDNAS ENCODING THE TRIFUNCTIONAL GLYCINAMIDE RIBONUCLEOTIDE SYNTHETASE-AMINOIMIDAZOLE RIBONUCLEOTIDE SYNTHETASE-GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE BY FUNCTIONAL COMPLEMENTATION IN ESCHERICHIA-COLI [J].
AIMI, J ;
QIU, H ;
WILLIAMS, J ;
ZALKIN, H ;
DIXON, JE .
NUCLEIC ACIDS RESEARCH, 1990, 18 (22) :6665-6672
[2]   STRUCTURES OF APO AND COMPLEXED ESCHERICHIA-COLI GLYCINAMIDE RIBONUCLEOTIDE TRANSFORMYLASE [J].
ALMASSY, RJ ;
JANSON, CA ;
KAN, CC ;
HOSTOMSKA, Z .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :6114-6118
[3]   DESIGN OF ENZYME-INHIBITORS USING ITERATIVE PROTEIN CRYSTALLOGRAPHIC ANALYSIS [J].
APPELT, K ;
BACQUET, RJ ;
BARTLETT, CA ;
BOOTH, CLJ ;
FREER, ST ;
FUHRY, MAM ;
GEHRING, MR ;
HERRMANN, SM ;
HOWLAND, EF ;
JANSON, CA ;
JONES, TR ;
KAN, CC ;
KATHARDEKAR, V ;
LEWIS, KK ;
MARZONI, GP ;
MATTHEWS, DA ;
MOHR, C ;
MOOMAW, EW ;
MORSE, CA ;
OATLEY, SJ ;
OGDEN, RC ;
REDDY, MR ;
REICH, SH ;
SCHOETTLIN, WS ;
SMITH, WW ;
VARNEY, MD ;
VILLAFRANCA, JE ;
WARD, RW ;
WEBBER, S ;
WEBBER, SE ;
WELSH, KM ;
WHITE, J .
JOURNAL OF MEDICINAL CHEMISTRY, 1991, 34 (07) :1925-1934
[4]   HYDROGEN-BONDING IN GLOBULAR-PROTEINS [J].
BAKER, EN ;
HUBBARD, RE .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1984, 44 (02) :97-179
[5]   STRUCTURAL FEATURES OF 5,10-DIDEAZA-5,6,7,8-TETRAHYDROFOLATE THAT DETERMINE INHIBITION OF MAMMALIAN GLYCINAMIDE RIBONUCLEOTIDE FORMYLTRANSFERASE [J].
BALDWIN, SW ;
TSE, A ;
GOSSETT, LS ;
TAYLOR, EC ;
ROSOWSKY, A ;
SHIH, C ;
MORAN, RG .
BIOCHEMISTRY, 1991, 30 (07) :1997-2006
[6]  
BEARDSLEY G P, 1986, P953
[7]  
BEARDSLEY GP, 1989, J BIOL CHEM, V264, P328
[8]  
BENKOVIC SJ, 1987, ENZYME MECHANISM, P429
[9]   THE RENEWED POTENTIAL FOR FOLATE ANTAGONISTS IN CONTEMPORARY CANCER-CHEMOTHERAPY [J].
BERMAN, EM ;
WERBEL, LM .
JOURNAL OF MEDICINAL CHEMISTRY, 1991, 34 (02) :479-485
[10]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542