GRAPH MINORS .4. TREE-WIDTH AND WELL-QUASI-ORDERING

被引:80
作者
ROBERTSON, N [1 ]
SEYMOUR, PD [1 ]
机构
[1] BELLCORE,MORRISTOWN,NJ 07960
基金
美国国家科学基金会;
关键词
D O I
10.1016/0095-8956(90)90120-O
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
K. Wagner conjectured that if G1, G2, ... is any countable sequence of finite graphs, then there exist i, j with j > i ≥ 1 such that Gi is isomorphic to a minor of Gj. Kruskal proved this when G1, G2, ... are all trees. We prove a strengthening of Kruskal's result-Wagner's conjecture is true for all sequences in which G1 is planar. We hope to show in a future paper that Wagner's conjecture is true in general, and the results of this paper will be needed for that proof. © 1990.
引用
收藏
页码:227 / 254
页数:28
相关论文
共 13 条
[1]  
ARCHDEACON D, 1980, THESIS OHIO STATE U
[2]   103 GRAPHS THAT ARE IRREDUCIBLE FOR THE PROJECTIVE PLANE [J].
GLOVER, HH ;
HUNEKE, JP ;
WANG, CS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) :332-370
[3]  
Higman G., 1952, P LOND MATH SOC, V3, P326, DOI 10.1112/plms/s3-2.1.326
[4]  
JENKYNS TA, 1969, 2ND P ANN ARB GRAPH, P87
[5]  
Kruskal J.B, 1960, T AM MATH SOC, V95, P210, DOI DOI 10.2307/1993287
[6]  
Mader W., 1972, J COMB THEORY B, V12, P105
[7]  
Nash-Williams C. St. J. A., 1963, P CAMBRIDGE PHILOS S, V59, P833
[8]   GRAPH MINORS .5. EXCLUDING A PLANAR GRAPH [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) :92-114
[9]   GRAPH MINORS .8. A KURATOWSKI THEOREM FOR GENERAL SURFACES [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (02) :255-288
[10]   GRAPH MINORS .3. PLANAR TREE-WIDTH [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 36 (01) :49-64