GRAPH MINORS .8. A KURATOWSKI THEOREM FOR GENERAL SURFACES

被引:74
作者
ROBERTSON, N [1 ]
SEYMOUR, PD [1 ]
机构
[1] BELLCORE,MORRISTOWN,NJ 07960
基金
美国国家科学基金会;
关键词
D O I
10.1016/0095-8956(90)90121-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any infinite set of graphs of bounded genus, some member of the set is isomorphic to a minor of another. As a consequence, for any surface Σ there is a finite list of graphs, such that a general graph may be drawn in Σ if an only if it topologically contains none of the graphs in the list. © 1990.
引用
收藏
页码:255 / 288
页数:34
相关论文
共 11 条
[1]   A KURATOWSKI THEOREM FOR NONORIENTABLE SURFACES [J].
ARCHDEACON, D ;
HUNEKE, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 46 (02) :173-231
[2]  
ARCHDEACON D, 1980, THESIS OHIO STATE U
[3]   103 GRAPHS THAT ARE IRREDUCIBLE FOR THE PROJECTIVE PLANE [J].
GLOVER, HH ;
HUNEKE, JP ;
WANG, CS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) :332-370
[4]  
Higman G., 1952, P LOND MATH SOC, V3, P326, DOI 10.1112/plms/s3-2.1.326
[5]  
Kruskal J.B, 1960, T AM MATH SOC, V95, P210, DOI DOI 10.2307/1993287
[6]  
Kuratowski, 1930, FUND MATH, V15, P271
[7]   GRAPH MINORS .4. TREE-WIDTH AND WELL-QUASI-ORDERING [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1990, 48 (02) :227-254
[8]   GRAPH MINORS .5. EXCLUDING A PLANAR GRAPH [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) :92-114
[9]   GRAPH MINORS .6. DISJOINT PATHS ACROSS A DISK [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) :115-138
[10]   GRAPH MINORS .7. DISJOINT PATHS ON A SURFACE [J].
ROBERTSON, N ;
SEYMOUR, PD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 45 (02) :212-254