DESITTER SYMMETRIC FIELD THEORY .3. QUANTIZATION IN TUNG-WEINBERG BASIS

被引:4
作者
BAKRI, MM
机构
关键词
D O I
10.1063/1.1665362
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2027 / &
相关论文
共 16 条
[1]   DESITTER SYMMETRIC FIELD THEORY .2. TENSORIAL AND SPINORIAL REALIZATIONS [J].
BAKRI, MM ;
GHALEB, AF ;
HESSEIN, MI .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (07) :2015-&
[2]   EQUIVALENCE OF 5-DIMENSIONAL FIELD EQUATIONS AND BARGMANN-WIGNER-SALAM EQUATIONS [J].
BAKRI, MM .
NUCLEAR PHYSICS B, 1969, B 12 (02) :341-&
[3]   DE SITTER SYMMETRIC FIELD THEORY .I. ONE-PARTICLE THEORY [J].
BAKRI, MM .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (02) :298-&
[4]   LAGRANGE FORMULATION FOR SYSTEMS WITH HIGHER SPIN [J].
CHANG, SJ .
PHYSICAL REVIEW, 1967, 161 (05) :1308-&
[5]   QUANTIZATION OF MULTISPINOR FIELDS [J].
CHANG, SJ .
PHYSICAL REVIEW, 1967, 161 (05) :1316-&
[6]  
GURALNIK GS, 1965, PHYS REV, V139, P712
[7]   COVARIANT WAVE EQUATIONS FOR MASSLESS PARTICLES [J].
MCKERRELL, A .
ANNALS OF PHYSICS, 1966, 40 (02) :237-+
[8]   GENERAL THEORY OF COVARIANT PARTICLE EQUATIONS [J].
PURSEY, DL .
ANNALS OF PHYSICS, 1965, 32 (01) :157-&
[9]  
ROSE ME, 1957, ELEMENTARY THEORY AN
[10]   UNITARY REPRESENTATIONS OF INHOMOGENEOUS LORENTZ GROUP [J].
SHAW, R .
NUOVO CIMENTO, 1964, 33 (04) :1074-+